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Abstract The Moderate Resolution Imaging Spectroradiometer (MODIS) Atmospheres data product
suite includes three algorithms applied to retrieve midvisible aerosol optical depth (AOD): the Enhanced
Deep Blue (DB) and Dark Target (DT) algorithms over land, and a DT over-water algorithm. All three have
been refined in the recent “Collection 6” (C6) MODIS reprocessing. In particular, DB has been expanded to
cover vegetated land surfaces as well as brighter desert/urban areas. Additionally, a new “merged” data set
which draws from all three algorithms is included in the C6 products. This study is intended to act as a point
of reference for new and experienced MODIS data users with which to understand the global and regional
characteristics of the C6 DB, DT, and merged data sets, based on MODIS Aqua data. This includes validation
against Aerosol Robotic Network (AERONET) observations at 111 sites, focused toward regional and
categorical (surface/aerosol type) analysis. Neither algorithm consistently outperforms the other, although
in many cases the retrieved AOD and the level of its agreement with AERONET are very similar. In many
regions the DB, DT, and merged data sets are all suitable for quantitative applications, bearing in mind that
they cannot be considered independent, while in other cases one algorithm does consistently outperform
the other. Usage recommendations and caveats are thus somewhat complicated and regionally dependent.

1. Introduction

Knowledge of the global atmospheric aerosol burden is of importance for a number of research areas, such
as understanding the radiation budget of the Earth system [e.g., Schulz et al., 2006], air quality and human
health [Pope et al., 2002], ecosystem fertilisation [Tian and An, 2013], aviation safety [Guffanti et al., 2010],
visibility forecasting [Zhang and Reid, 2006], and solar energy yields [Murphy, 2009]. Due to the high spa-
tiotemporal variability of aerosol loading, satellite observations can make an important contribution to
research in these areas. However, past and present satellite instruments have insufficient measurement
capabilities to determine the relevant aerosol parameters of interest to within the uncertainties desired
for some of these applications [e.g., Hasekamp and Landgraf, 2007; Kokhanovsky et al., 2010; Kahn, 2012].
For radiative calculations, the key aerosol parameters are the spectral aerosol optical depth (AOD), direc-
tional dependence of scattering (i.e., phase matrix), spectral single scattering albedo (SSA), and vertical
profile. In contrast, applications such as air quality focus more on the total mass of particles near the sur-
face (often particulate matter smaller than 2.5 or 10 μm diameter, termed PM2.5/PM10, respectively) than on
optical metrics.

The diversity in Earth-observing satellite instruments has led to the development of many different aerosol
remote sensing algorithms; discussion of different sensors/algorithms and their strengths and limitations
is provided by, e.g., Mishchenko et al. [2007], Kokhanovsky and de Leeuw [2009], Li et al. [2009], Mishchenko
et al. [2010], Hyer et al. [2011], Kahn et al. [2011], Kahn [2012], and references therein. The most commonly
retrieved parameters are the midvisible AOD and the Ångström exponent 𝛼, which describes the spectral
dependence of AOD over a given wavelength range. One sensor (among many) is the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), for which three AOD retrieval algorithms are processed routinely
as part of NASA’s MODIS Atmospheres product suite. Over land, these are known as Dark Target (DT) and
Deep Blue (DB); DT [Kaufman et al., 1997; Levy et al., 2013] was developed to work over dense, dark vegeta-
tion while DB was originally [Hsu et al., 2004] developed to fill in the gaps in DT by providing coverage over
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brighter surfaces (such as deserts). The third algorithm [Tanré et al., 1997; Levy et al., 2013] is applied over
water surfaces and is also a “Dark Target” approach in that it relies on midvisible and longer wavelengths at
which the water surface is dark, although the DT land and ocean algorithms are algorithmically independent
from each other. A combined DT land/ocean scientific data set (SDS) has also been (and still is) provided in
the MODIS Level 2 (orbit-level) data products. Because of the over-land focus of this study, the term DT is
used hereafter to refer to only the over-land algorithm.

Recently, the MODIS Collection 6 (C6) data product suite has been released. This multidisciplinary effort
contains refinements to all three aerosol algorithms [Hsu et al., 2013; Levy et al., 2013; Sayer et al., 2013], as
well as considerable work by the MODIS Characterization Support Team (MCST) and Ocean Biology Pro-
cessing Group (OBPG) to maintain or improve the high radiometric quality of MODIS top-of-atmosphere
(TOA) radiance measurements through the time series [e.g., Meister and Franz, 2011; Meister et al., 2012; Wu
et al., 2013]. Aerosol algorithmic refinements have been driven in part by studies which identified various
shortcomings and contextual biases of the previous versions [e.g., Zhang and Reid, 2006; Levy et al., 2010;
Bréon et al., 2011; Hyer et al., 2011; Shi et al., 2011, 2013; Huang et al., 2013]. The previous reprocessings were
known as Collection 5 (C5) and Collection 5.1 (C5.1); the same aerosol algorithm versions were included in
the C5 and C5.1 processings, which are hereafter referred to as C5 for simplicity.

In C6 the capabilities of the DB algorithm have been expanded to cover all cloud-free snow-free land sur-
faces, and the new algorithm version is also referred to as “enhanced Deep Blue” to distinguish it from the C5
algorithm. As a result of this expanded coverage, over much of the world both DB and DT data are available.
An additional, “merged,” SDS is now also provided in the MODIS aerosol products, combining the DB with DT
land/ocean data. This study provides a first comparison and evaluation of the C6 DB, DT, and merged data
sets against each other and Aerosol Robotic Network (AERONET) [Holben et al., 1998] ground-truth data,
with the intent of identifying their strengths and weaknesses and helping users to identify the most appro-
priate of the data set(s) to use for their particular application. The focus of this effort is on comparison and
evaluation of the over-land data sets; Sayer et al. [2012a] and Levy et al. [2013] provide discussion and some
evaluation of the C6 over-ocean algorithm and comparisons to C5. Section 2 provides more detail on the
DB and DT algorithms and merging process, and section 3 a detailed comparison of the data sets with each
other. Section 4 presents the evaluation methodology to compare the three against AERONET, and section 5
provides discussion of results and some usage recommendations from global and regional perspectives.

2. MODIS Data Set Descriptions

Two MODIS sensors are in operation, launched to Sun-synchronous polar orbits on the Terra platform (10:30
A.M. local solar Equatorial crossing time) in late 1999 and on the Aqua platform (1:30 P.M. local solar Equato-
rial crossing time) in 2002. MODIS is a passive imaging radiometer and measures reflected solar and emitted
thermal radiation in 36 bands, across a 2330 km swath (providing near-daily global coverage at the Equa-
tor and overlap between orbits at higher latitudes). Spatial resolutions are between 250 m and 1 km at nadir
(dependent on band) but become progressively larger at the edge of the swath, by a factor of up to ∼2
along-track and ∼5 across-track. The DB and DT data sets are both provided at a nominal (nadir) spatial res-
olution of 10×10 km. Spatiotemporally aggregated “Level 3” products at 1◦ × 1◦ horizontal and daily, 8 day,
and monthly temporal resolution are also available.

These data sets are distributed freely in hdf4 format from http://ladsweb.nascom.nasa.gov/ as the
MxD04_L2, MxDATML2, and MxD08 data products (x is O for MODIS Terra and Y for MODIS Aqua). The DT
land and ocean algorithms are also used to create a separate data product at 3×3 km [Remer et al., 2013],
although this has no DB equivalent, and is not used in the merged product or propagated into Level 3 prod-
ucts, so is not further discussed here. Additional documentation and browse imagery can be found at http://
modis-atmos.gsfc.nasa.gov/.

Throughout this study, the retrieval data product evaluated is the AOD at 550 nm, which is the primary data
product from the DB and DT algorithms, denoted 𝜏DB and 𝜏DT, respectively, or as 𝜏M (M for “MODIS”) when
in a generic context not specific to one algorithm. Unless specified otherwise, references to AOD indicate
AOD at 550 nm, and only retrievals passing recommended quality assurance (QA) checks [Hsu et al., 2013;
Levy et al., 2013; Sayer et al., 2013] are used (for DB, corresponding to retrievals flagged QA=2 or QA=3; for
DT, retrievals flagged QA=3). This QA filtering is to match the analysis to the intended way in which most
users will approach the data sets. Table 1 provides the names for the relevant SDS within the MODIS Level
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Table 1. Relevant Level 2 SDS Names and Contents for QA-Filtered MODIS AOD at 550 nm

SDS Name Contents

AOD_550_Dark_Target_Deep_Blue_Combined The “merged SDS:” DB, DT, or their average over land;
ocean algorithm over ocean.

AOD_550_Dark_Target_Deep_Blue_Combined_Algorithm_Flag Indicates the algorithm populating each pixel
of the merged SDS.

Optical_Depth_Land_And_Ocean Union of DT land and ocean data.

Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate DB over land, no data over ocean.

2 aerosol products. Only C6 data from MODIS Aqua are used in this analysis as Terra C6 data are not yet
available, although they are expected to be quantitatively similar.

2.1. Dark Target
The C6 implementation of the DT algorithm [Levy et al., 2013] includes refinements and code bugfixes but
is based on the same principles as the C5 version, described by Levy et al. [2007], which builds on the her-
itage of the initial implementation [Kaufman et al., 1997]. First, measured TOA reflectances within each
10×10 km retrieval box are screened to remove unsuitable (e.g., cloud, desert, snow/ice, and inland water)
pixels; an additional fraction of the darkest and brightest pixels is discarded, and the remaining pixel-level
reflectances averaged. Then, the shortwave IR (swIR) TOA reflectance is related to surface reflectance at vis-
ible wavelengths (470 nm and 650 nm) via an assumed spectral/directional relationship, which are then
used to determine the total AOD from a weighted combination of fine-mode dominated and coarse-mode
(dust) dominated aerosol models by matching the averaged TOA reflectance at these wavelengths. The
fine-dominated model used for a given retrieval is determined by location on the globe and season. The DT
algorithm is not applied over scenes identified by internal tests as bright land surfaces (e.g., deserts, snow),
as the swIR-to-visible surface reflectance relationship does not hold for these surface types.

The estimated 1 standard deviation absolute uncertainty confidence envelope for the DT algorithm (for
QA=3 data), often referred to as “expected error” (EEDT), has been determined on global average [Levy et al.,
2010, 2013] to be ±(0.05+0.15𝜏A), where 𝜏A is the AERONET-observed AOD (i.e., a diagnostic uncertainty
estimate). This AOD dependence of uncertainty arises because in low-AOD conditions the total uncer-
tainty is dominated by surface reflectance assumptions while as AOD increases assumptions related
to aerosol properties (most notably SSA and spectral slope of AOD), which scale with AOD, become
increasingly dominant.

2.2. Deep Blue
MODIS C6 includes a heavily revamped and extended version of the original DB algorithm and is described
by Hsu et al. [2013]. Unlike DT, DB performs retrievals on cloud-free and snow-free pixels at nominal 1×1 km
spatial resolution and then aggregates afterward to the 10×10 km retrieval box. Retrievals are performed
over bright desert surfaces, in addition to vegetated surfaces. Surface reflectance is prescribed by one
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Figure 1. Regional algorithm choices for the “merged” SDS
included in MODIS C6 aerosol data. Regions in grey lack valid
NDVI (as well as valid AOD retrievals).

of several methods, dependent on location, sea-
son, and land cover type: from a database as a
function of location, season, scattering angle,
and normalized difference vegetation index
(NDVI); from an empirically derived bidirectional
reflectance distribution function (BRDF) for a given
region and season; or from a spectral/directional
relationship (similar to the DT method) for a given
land surface classification type. The algorithm
retrieves AOD individually at each of 470 and/or
412/650 nm (dependent on surface type), for an
assumed aerosol optical model (as a function of
location and season), and then determines the
combination of AOD (at 550 nm) and 𝛼 which
is most consistent with the retrieved spectral
AOD. In low-AOD conditions, 𝛼 is set to a fill value
(1 over deserts, 1.5 elsewhere), and in high-AOD
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(a) MODIS Aqua: 13:40 UTC, 21 Jan 2010
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Figure 2. Example of the merging process for a MODIS Aqua granule over the Sahel. (a) A true-color image and (b) the algorithms selected for each individual
retrieval (cf. Figure 1). (c–e) DB, DT land/ocean, and merged AOD, respectively. Regions in grey lack valid AOD retrievals.

conditions with a sufficiently dark surface reflectance, the spectral SSA is also retrieved by using a maximum
likelihood method to pick between one of a set of aerosol optical models.

Sayer et al. [2013] validated DB data against AERONET to determine empirical 1 standard deviation abso-
lute uncertainty confidence envelopes, which depend on the AOD, QA flag, and viewing geometry. These
uncertainty estimates for DB are provided within the data products for each retrieval. For QA=3 data (high-
est quality), this expected error (EEDB) was found to be ±([0.086+0.56𝜏DB]/[1/𝜇0+1/𝜇]), where 1/𝜇0+1/𝜇 is
the sum of the reciprocal cosines of solar and view zenith angles for a given retrieval. Unlike the DT uncer-
tainty estimate, this is a prognostic uncertainty (i.e., defined relative to DB-retrieved AOD rather than to
AERONET AOD). As a typical value, 1/𝜇0+1/𝜇 ≈2.8, such that EEDB ≈ ±(0.03+0.20𝜏DB), comparable to the DT
uncertainty for typical aerosol loadings (AOD∼ 0.1 − 0.5).

2.3. Merging Procedure
The inclusion of a merged SDS within the C6 aerosol products was motivated by a desire to provide a more
gap-filled data set than is available from the individual algorithms alone. Hereafter, the discussion focusses
on retrievals rather than sensor pixels, and so the term “pixel” is used to refer to the (nominal) 10×10 km
spatial resolution retrievals rather than the raw (higher-resolution) sensor measurements.

The logic behind the merge as implemented within the C6 reprocessing was that there is a longer heritage
of user familiarity with DT data over densely vegetated regions, while DB is the only data set providing cov-
erage over arid surfaces. Three classifications were determined by aggregating MODIS-derived climatologies
of NDVI (the MYD13C2 data set) [Huete et al., 2011] to 0.25◦ spatial resolution for each month of the year.
Over land, where NDVI≤0.2 in a given month, DB data are used to populate the merged SDS, and where
NDVI ≥0.3, DT data are used. For intermediate NDVI (often transition zones between arid and vegetated
land), the algorithm whose retrieval returns the higher QA flag is used, or if both return QA=3, the mean
value is used. This empirical approach was designed to be simple and transparent to the end-user, and there
is scope to revisit it in the future; a SDS is provided within the Level 2 data products so that users may iden-
tify which of these three NDVI regimes each individual retrieval falls into (see Table 1). All over-ocean scenes
in the merged SDS are populated using the ocean algorithm. The merged SDS is only populated for those
pixels where the appropriate algorithm’s retrieval is assigned a sufficiently high QA flag to be deemed usable
by the algorithm team (QA≥2 for DB, QA=3 for DT, QA≥1 for ocean). Note that QA tests and quality defi-
nitions are different for the three AOD retrieval algorithms (the 0–3 scale used is shared convention rather
than implying commonality of definitions) and that only over-land pixels are analysed in this study.
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Figure 3. Seasonal mean AOD from the “merged” SDS for 2006–2008, at 1◦ × 1◦ horizontal resolution,
for (a) December-January-February (DJF), (b) March-April-May (MAM), (c) June-July-August (JJA), and (d)
September-October-November (SON). Grid cells with fewer than 3 days containing valid data in a season
are shaded in grey.

Figure 1 shows an annual composite of these classifications. The category “merged some months” indicates
grid cells where in some months the NDVI falls into this transitionary range (0.2–0.3) and in others DB/DT
are assigned, while “merged all months” indicates regions where the climatological NDVI always falls within
this range. Thus, DB is chosen largely over deserts, DT over largely perpetually vegetated regions, and the
potential merging zone borders these two, moving dependent on the seasonal growth and senescence
of vegetation.

Figure 2 provides an example for a MODIS granule over the Sahel; the resultant merged AOD field is more
spatially complete than either the DB or DT AOD fields, although as is an inherent danger in any data set
created from multiple algorithms, the merging may also introduce discontinuities. For this specific example,
there are discontinuities between the DT land and ocean algorithms under the heavy aerosol visible around
0–8◦N, 0–8◦E, and in the “merged” data set along the line where its source switches between DB and DT
(from 16◦N, 12◦W to 4◦N, 4◦W). On a global basis, Figure 3 shows seasonal mean AOD calculated from the
merged SDS. Residual gaps in coverage are associated with persistent cloud/snow cover and polar night;
otherwise, the regional and seasonal patterns are similar to results obtained from other satellite sensors and
model simulations [e.g., Kinne et al., 2006].

3. Comparison Between MODIS Data Sets

Previous validation and comparison exercises have identified regime-specific biases in the over-land C5/C6
MODIS aerosol data sets, from both globally [Levy et al., 2010, 2013; Bréon et al., 2011; Hyer et al., 2011; Shi
et al., 2011, 2013; Sayer et al., 2013] and regionally focussed [Li et al., 2007; Drury et al., 2008; Li et al., 2009;
Jethva et al., 2010; Wang et al., 2010; Bennouna et al., 2011; Banks et al., 2013; Eck et al., 2013] studies. Thus,
this section examines regionally and globally aggregated C6 data to note their similarities and differences.

3.1. Mapped Collocated Pixel-Level Data
This analysis uses only those pixels where both DB and DT algorithms provided a retrieval passing QA checks
during 2006–2008. As a result of the requirement for pixel-level matching between the algorithms, no data
remain over water or bright desert surfaces. Figure 4 shows the seasonal mean (computed as mean of daily
means) AOD from the DB and DT data sets, and their difference (𝜏DB − 𝜏DT). Seasonal median AOD and differ-
ence maps (not shown) have very similar spatial patterns over much of the world to these seasonal means.
This happens as the bulk of the data in many regions/seasons are for low-AOD conditions; these persis-
tent offsets between the two data sets are likely due in large part to surface reflectance assumptions. In a
few areas (e.g., smoke from wildfires in north-eastern Russia in JJA, smoke in South America during SON),
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Figure 4. Seasonal mean AOD for 2006–2008, at 1◦ × 1◦ horizontal resolution, for (left) Deep Blue and (middle) Dark Target. (right) The difference (DB−DT) in the
mean AOD. Grid cells with fewer than 3 days containing valid data in a season are shaded in grey.

median AODs and 𝜏DB − 𝜏DT are smaller than the mean values. These are cases where sporadic high-AOD
events (and corresponding larger retrieval uncertainties) are contributing more to Figure 4.

With a few notable exceptions, the mean (and median) differences between DB and DT data are less
than 0.05 over large parts of the world. In locations where DT frequently retrieves negative AOD
(caatinga/cerrado surfaces of the Sertão in Brazil, and much of Australia), the difference is typically 0.05–0.1
as DB retrieves small positive AOD. The mean 𝜏DB − 𝜏DT is positive in the Sahel and negative in south-eastern
Asia; these are high-AOD regions which contain dust (albeit from different sources and with potentially dif-
ferent optical properties), smoke, and industrial aerosols, such that assumptions related to aerosol optical
properties are likely to contribute to differences between AOD retrieved by the two algorithms frequently.

Interestingly, for India 𝜏DB − 𝜏DT is negative in JJA (approximately −0.15) and small or positive in other
seasons, such that DT reports a larger seasonal variability of AOD. Observational [Gautam et al., 2010] and
model [Henriksson et al., 2011] studies concerning the seasonal contribution of different aerosol types to the
total AOD in India show that mineral dust makes a large contribution to total AOD during the pre-monsoon
season (April–June) while at other times of the year anthropogenic fine-mode-dominated aerosols are opti-
cally more dominant. As this is a densely populated region, there is considerable interest in understanding
the aerosol loading and its changes through time here from radiative, meteorological, and health perspec-
tives [Garg et al., 2006; Ramanathan et al., 2007; van Donkelaar et al., 2010; Dey and Di Girolamo, 2011; Hsu
et al., 2012], and, given the utility of satellite data for this task, it is suggested that future work should aim to
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Figure 5. Correlation between daily Deep Blue and Dark Target AOD on a seasonal basis, for (a) DJF, (b) MAM, (c) JJA, and
(d) SON. Grid cells with fewer than 3 days containing valid data in a season are shaded in grey.

understand these discrepancies between the DB and DT data sets such that they can be resolved in future
versions of the algorithm. Although an in-depth regional analysis is out of the scope of this study, validation
against AERONET in section 4 does provide an assessment (discussed later) of the likely reliability of both
algorithms globally and regionally.

The correlation between daily mean AOD retrieved by both algorithms within a given season is high
(Figure 5), typically above 0.9, aside from persistently low-AOD regions where the magnitude of day-to-day
variability in AOD is small compared to retrieval uncertainty. This indicates that both algorithms track the
same changes in AOD. The results in this section are quantitatively similar (not shown) if data are matched
on a daily 1◦ basis, rather than a 10 km pixel-level basis, suggesting that the primary differences between
DB and DT data on these spatial/temporal scales are related to algorithmic assumptions rather than
pixel selection.

Considering the high correlation between DB and DT retrievals shown in Figure 5, it is worth examining the
level of agreement between individual retrievals and to understand how frequently retrievals are in agree-
ment with each other relative to their stated uncertainties (EEDB and EEDT; section 2). Although DT provides
a diagnostic rather than prognostic error estimate, if it is assumed that on average DT provides an unbiased
estimate of the true AOD for a given regime (i.e., for a given atmospheric/surface regime, over a large ensem-
ble of observations, 𝜏DT = 𝜏A), it would be reasonable to treat EEDT as prognostic and create uncertainty
estimates on a per-pixel basis. Note that this assumption does not necessarily hold true for high-AOD condi-
tions, but biases in low-AOD conditions are small (see section 5). Then, if EEDB and EEDT represent unbiased
Gaussian 1 standard deviation uncertainty confidence intervals on retrieved AOD, and if the errors in DB
and DT retrievals are independent of each other, then 1 standard deviation (i.e., 68%) of individual retrieval

differences 𝜏DB − 𝜏DT should fall within the quadrature sum of these uncertainties, i.e., ±
√

(EE2
DB + EE2

DT).

Figure 6 shows, on a seasonal basis, the fraction of retrievals where the absolute difference between

retrievals |𝜏DB − 𝜏DT| is smaller than
√

(EE2
DB + EE2

DT). It is immediately apparent that the majority of the land
surface is shaded in red tones, indicating that greater than 68% of matched retrievals are more similar to
each other than this combined uncertainty estimate would suggest. Indeed, in many areas this figure is over
90%. This indicates regions where the uncertainties in the the two algorithms are therefore not independent
of each other and/or are smaller than the stated expressions for EEDB and EEDT. It is important to emphasise
that this agreement between the two data sets in retrieved AOD does not imply that both are “true”; it may
also show areas where the two algorithms make similar assumptions, which may or may not be appropriate.

In contrast, in semiarid and/or elevated regions (e.g., the Sahel, south-western Asia, southern tip of Africa,
and south-western North America), regions where DT retrieves negative AOD (the Sertão region of Brazil;
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Figure 6. Seasonal fraction of matched retrievals whose absolute difference is smaller then the quadrature sum of their
expected uncertainties, for (a) DJF, (b) MAM, (c) JJA, and (d) SON. Grid cells with fewer than 3 days containing valid data
in a season are shaded in grey.

Australia), and high-AOD regions (e.g., India and south-eastern Asia), fewer than 40% of matched retrievals
are in agreement, indicating areas where algorithmic uncertainties are anticorrelated and/or larger than
stated. Accordingly, these are the regions that show some of the largest differences in seasonal mean AOD
between the two data sets in Figure 4.

This comparison shows that the DB and DT data sets should not be considered statistically independent of
one another and that there are regions where they are persistently more or less frequently in agreement
than would be expected based on their stated uncertainty estimates. This lack of independence is not sur-
prising as the algorithms use measurements from the same sensor (albeit not identical spectral bands) and
make some similar algorithmic assumptions, but is important to state nonetheless, so that users are aware
of it. As well as highlighting regions for further study and algorithmic refinement, for those areas where
Figure 6 is shaded in red tones, it may be less critical to an end-user which of the two algorithms (DB or DT)
they use for their particular scientific application, while for those shaded in blue tones, it is more likely that
use of the different algorithms in an analysis may result in different conclusions being reached.

3.2. Comparison of Relative Sampling Rate
This section examines how spatial coverage differs between the two data sets for those areas where both
attempt retrievals. Figure 7 shows the seasonal ratio of the number of available DB retrievals passing QA
checks to the number of available DT retrievals passing QA checks, on a 1◦ grid, for those grid cells where
both algorithms provide retrievals. Related to this, Figure 8 shows, for both algorithms, the fraction of
attempted retrievals which pass QA checks. This is provided on an annual basis for brevity, as regional
variation in this metric was found to be larger than seasonal variation.

These figures show that the coverage provided by the two algorithms can differ considerably (by a factor of
3 or more) on both a regional and seasonal basis. Overall, DB provides more retrievals over many parts of the
world, particularly those which are seasonally semiarid. In contrast, DT provides significantly more retrievals
over tropical rainforests and southern Asia in JJA. The ratio of the number of retrievals is otherwise close
to unity in southern Asia in other seasons, over large parts of South America outside of the Amazon and
Andes, and over selected regions of North America and Eurasia on a seasonal basis. Figure 8 suggests that
these differences are explained not just by choice of pixels to use in retrieval (i.e., DT only retrieving over
scenes deemed sufficiently dark) but also large part by QA checks in the retrievals. In particular, DB assigns
“good” QA values less often than DT in forested tropical regions, where cloud cover is frequently domi-
nated by small broken cumulus cloud fields. Figure 9 provides an example of this over the Amazon; prior to
QA checks DB and DT obtain similar coverage but filtering out poor-QA retrievals (QA≤1 for DB, QA≤2 for
DT, QA=0 for ocean) removes a significantly higher amount of DB retrievals in the gaps between cumulus
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Figure 7. Seasonal ratio of the number of DB retrievals passing QA checks to the number of DT retrievals passing QA
checks, for (a) DJF, (b) MAM, (c) JJA, and (d) SON. Grid cells where one or both algorithms provide fewer than 10 retrievals
passing QA checks in a season are shaded in grey.

clouds. Conversely, DB assigns good-QA more frequently in many sparsely vegetated regions. Figure 10 pro-
vides an example over Europe, where retrieval coverage of DB and DT is similar (aside from an arid portion
of Spain). Although not directly relevant to DB/DT comparisons due to an absence of coverage of one of the
algorithms, good QA is almost always assigned over oceans and by DB over deserts (Figure 8).

3.3. Aggregated Pixel-Level Data
As before, the results in this section were obtained by considering only those pixels where both DB
and DT algorithms provided a retrieval passing QA checks, although only every 10th day during the
years 2006–2008 were used (6,692,616 pairs of matched retrievals) for a more manageable data volume.
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Figure 8. Fraction of attempted retrievals passing QA
checks, for (a) Deep Blue and (b) Dark Target land/ocean.
Grid cells where the algorithm in question provides fewer
than 10 retrievals are shaded in grey.

Figure 11 shows binned statistics of retrieved AOD
and the difference 𝜏DB − 𝜏DT. Figure 11a shows a
peak in retrieved AOD near 0.1 and a rapid decline
in frequency of occurrence as AOD increases
to about 1, in both DB and DT. Outside of this
range, some key differences become more appar-
ent. Firstly, DT permits retrieval of small negative
AOD (down to −0.05) which, while unphysical,
are retained as an attempt to ensure that AOD in
clean conditions does not have biases truncated
in one direction. This happens in approximately
20% of pixels in the matched set and occurs most
frequently over Australia in all seasons and over
eastern Brazil in JJA. DB does not permit retrieval
of negative AOD. This algorithmic difference
explains, in part, the lower correlation of DB and
DT in these regions shown in Figure 5 and the
lower frequency of agreement in these regions
shown in Figure 6.

Secondly, the maximum permitted AOD in DT
is 5; in DB the limit is lower (as mentioned, AOD
retrieval is performed individually at a combi-
nation of 412, 470, and 650 nm, each of which
is capped at an AOD of 3.5 at that wavelength,
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Figure 9. Example of QA filtering for a MODIS Aqua granule over the Amazon. (a) A true-color image. (b and c) DB and DT land/ocean AOD, respectively, without
QA filtering. (d and e) The same after data are filtered to remove those pixels failing QA tests. Regions in grey lack valid AOD retrievals.

and then interpolated to 550 nm). These extreme high values of AOD are rarely encountered (fewer than 5%
of retrievals in either data set are for AOD above 1) but can influence the regional statistics. DB AOD tends
to be lower than DT in the high-AOD region of China throughout the year and in the main South American
biomass burning season (SON). Overall, the mean and median AOD from DB for this matched set of retrievals
are 0.156 and 0.086, respectively, and for DT 0.142 and 0.077, respectively, while the standard deviations are
0.197 for DB and 0.225 for DT. The lower median than mean AOD in both cases is a result of the well-known
tendency for AOD distributions to be approximately lognormal [e.g., O’Neill et al., 2000]. The slightly lower
median/mean and higher standard deviation in DT as compared to DB reflects the ∼20% of retrievals where
−0.05 ≤ 𝜏DT ≤ 0.

(a) MODIS Aqua: 13:10 UTC, 14 Jul 2007 (b) Deep Blue AOD, all QA
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Figure 10. As Figure 9, but for a granule over Europe.
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(c) Difference vs. surface altitude
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(d) Difference vs. solar zenith angle
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(e) Difference vs. view zenith angle
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(f) Difference vs. scattering angle
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Figure 11. Comparative statistics of Deep Blue/Dark Target AOD retrievals. (a) Histograms of retrieved AOD, with a logarithmic frequency scale. (b–f ) The differ-
ence (𝜏DB − 𝜏DT) binned as a function of 𝜏DT, surface altitude, solar zenith angle, view zenith angle, and scattering angle, respectively. In Figures 11b–11f ), red
indicates bin mean values, black bin medians, and the central 68% range of the data is shown in grey.

These differences in extrema (on both ends) are also responsible in part for the positive offset (at near-zero
AOD) and then increasingly negative 𝜏DB − 𝜏DT as 𝜏DT increases in Figure 11b, although for the bulk of the
data the overall bias is near-zero. Specifically, the 90th percentile of AOD is 0.38 in both data sets, and mean
and median values of 𝜏DB − 𝜏DT range from 0.02 (for 𝜏DT = 0) to −0.005 (for 𝜏DT = 0.5).

The remaining panels illustrate the elevation and angular dependence of 𝜏DB − 𝜏DT. As surface elevation
increases, 𝜏DB − 𝜏DT goes from positive to negative, likely as a result of differences in radiative transfer
assumptions about the effects of elevation and surface pressure, and/or assumptions concerning surface
reflectance. In particular, highly elevated surfaces are likely to be less densely vegetated (or vegetated in a
different manner) than those near the surface and so it is possible that the algorithms’ surface reflectance
parameterizations are less valid in these situations. Studies have suggested that at high elevations, C5 DT

Region allocation for AERONET sites
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Figure 12. Geographical bounds of regions used in this study for
grouping of MODIS and AERONET AOD. Locations of the AERONET
sites used are indicated by black diamonds. Region names and
associated abbreviations are Eastern North America (ENA), Western
North America (WNA), Central/South America (CSA), Eurasia (EUR),
North Africa/Middle East (NAME), Southern Africa (SA), Indian
subcontinent (IND), North-East Asia (NEA), South-East Asia (SEA),
and Oceania (OCE).

data could be on average biased high [Levy
et al., 2010; Zelazowski et al., 2011] and C6
DB data on average biased low [Sayer et al.,
2013], which is consistent with these results.
However, for the bulk of the data (the 90th
percentile of surface altitude is 1.23 km),
the difference and its variation with altitude
are small.

Figures 11d–11f reveal some interest-
ing angular dependencies. While there is
near-zero average difference at the edges of
the swath, near the center DB is higher than
DT by about 0.03, and the peak of this dif-
ference is found around 10◦ viewing zenith
angle on the western side of the swath. The
reasons for this are unclear. A similar offset
is found at many solar zenith and scattering
angles, although for high-Sun conditions
𝜏DB − 𝜏DT can become as low as −0.1 on
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average. It is possible that this is related to the fact that these geometries tend to be encountered in the
tropics during the summertime, in which AOD tends to be high (as a result of dust/smoke), and so this may
be in part a result of the AOD-dependence of 𝜏DB − 𝜏DT (Figures 11a and 11b) rather than anything directly
related to solar zenith angle. The distribution of 𝜏DB − 𝜏DT also becomes broader at angles near backscatter,
which may be related to difficulties modelling the surface BRDF hot spot [Hyer et al., 2011; Sayer et al., 2013].
Backscatter geometries and low solar zenith angles are also associated with higher DB retrieval uncertainty,
which is reflected in the uncertainty estimates provided within the C6 data files [Sayer et al., 2013].

The difference 𝜏DB − 𝜏DT was also examined as a function of fractional cloud cover (as estimated by the DT
retrieval cloud mask) within the retrieval pixel, stratified by solar/view geometry and land surface cover.
These results are omitted for brevity; no strong dependence of 𝜏DB − 𝜏DT on cloud cover or proximity was
found. This does not imply that there is no bias in either product with increasing cloud fraction but rather
that any biases are likely similar.

4. Comparison Against AERONET
4.1. AERONET Data and Matchup Protocol
The Sun photometers used by AERONET derive total columnar spectral AOD with low uncertainty
(∼0.01–0.02), much smaller than typical satellite uncertainties, through observation of direct solar radia-
tion and subsequent correction for the scattering and absorption of gases in the atmosphere [Holben et al.,
1998]. Almost all AERONET sites provide AOD at 440, 675, 870, and 1020 nm, and many provide data at addi-
tional wavelengths. Under cloud-free conditions, observations are taken at fairly high temporal resolution
(∼15 min). Due to this low uncertainty and standardisation of network protocols across sites in a wide range
of locations (several hundred at the time of writing), AERONET direct-Sun data have been used for multiple
purposes, including the large-scale validation and bias-correction of satellite AOD for many different data
sets [e.g., Ichoku et al., 2002; Zhang and Reid, 2006; Levy et al., 2010; Kahn et al., 2010; Bréon et al., 2011; Hyer
et al., 2011; Sayer et al., 2012b, 2013].

The recommended AERONET data product for most quantitative applications is known as Level 2.0, which
has undergone cloud screening, calibration checks, and quality assurance [Smirnov et al., 2000]; the current
Version 2 of this product is used here. A total of 111 sites are used, shown in Figure 12, corresponding to
the 60 sites considered by Sayer et al. [2013] when validating the C6 DB data, plus an additional 51 sites
chosen primarily because of their good data volumes, and to expand coverage of some regime types (e.g.,
the Indian subcontinent and south-eastern Asia, and some elevated areas).

The sampling strategies of AERONET and satellite sensors are quite different, and as such a direct com-
parison between the two is nearly impossible: AERONET provides repeated point measurements of the
aerosol column between Sun and ground site, while satellites provide an instantaneous snapshot of the
aerosol column between ground and sensor, across a swath. Thus, this study follows the widely used pro-
tocol (e.g., prior references) of averaging AERONET data around the time of the satellite overpass (here,
±30 min), and averaging satellite data (passing QA checks) spatially near the AERONET site (here, ±25 km),
to mitigate the effect of variability in the underlying aerosol field on the comparison. The AERONET AOD
at 550 nm (𝜏A) is obtained by interpolating the spectrally closest AERONET AOD (normally 440 or 500 nm)
using the standard Ångström exponent 𝛼. As AOD tends to vary smoothly through this spectral region, typ-
ically negligible (<0.01) uncertainty is introduced by this interpolation. A valid matchup is obtained when
there is at least one MODIS retrieval passing QA checks near the site and at least one AERONET observa-
tion near the time of the satellite overpass. Although averaging the satellite data rather than requiring an
exact pixel-level matchup may decrease the apparent level of random error, in practice for these algorithms
the statistical difference has been found to be, in most cases, negligible and smaller than site-to-site or
algorithm-to-algorithm variability [Petrenko et al., 2012; Sayer et al., 2012b], due in part to small sensor noise.
Additionally, the spatial averaging provides a significantly larger data volume for analysis.

4.2. AERONET Comparisons and Evaluation Metrics
The C6 DB AOD was validated by Sayer et al. [2013]; some DT validation results were presented by Levy et al.
[2013]. Thus, the analysis here focusses more on the comparative performance of DB, DT, and the merged
SDS on a global and regional (regions defined in Figure 12) basis, with the intent that this will aid users in
understanding the characteristics of the various MODIS aerosol products for their particular region(s) of
study, and provide direction for future evaluation/improvement studies of these data products. Two sets
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Table 2. Global and Regional Statistics of MODIS/AERONET Comparison of AOD at 550 nm, for the Data Collocated on an Individual MODIS Retrieval-Levela

Number Number R Median Bias f Within EEDT RMS Error
Region of Sites of Matches DB DT Merge DB DT Merge DB DT Merge DB DT Merge

Global 111 49039 0.89 0.89 0.89 −0.017 −0.011 −0.014 0.76 0.67 0.69 0.11 0.11 0.11
ENA 10 5205 0.86 0.88 0.88 0.0017 −0.0035 −0.0030 0.87 0.76 0.77 0.055 0.069 0.069
WNA 12 6251 0.74 0.70 0.77 −0.012 0.023 0.012 0.81 0.69 0.76 0.078 0.11 0.095
CSA 13 4527 0.89 0.92 0.92 −0.028 −0.049 −0.049 0.72 0.51 0.54 0.12 0.11 0.11
EUR 21 14252 0.87 0.86 0.86 −0.015 −0.0099 −0.0099 0.83 0.74 0.74 0.067 0.081 0.080
NAME 15 4402 0.80 0.81 0.82 −0.036 −0.013 −0.029 0.54 0.60 0.60 0.18 0.17 0.17
SA 6 2197 0.89 0.81 0.82 −0.031 −0.056 −0.057 0.74 0.55 0.54 0.078 0.11 0.11
IND 7 2777 0.85 0.87 0.86 −0.073 −0.014 −0.025 0.60 0.71 0.69 0.17 0.15 0.16
NEA 12 4351 0.93 0.94 0.94 −0.025 0.0016 −0.0043 0.69 0.70 0.72 0.14 0.15 0.14
SEA 9 2038 0.84 0.88 0.88 −0.0013 −0.010 −0.010 0.62 0.56 0.56 0.17 0.15 0.15
OCE 6 3039 0.67 0.64 0.64 −0.018 −0.044 −0.042 0.85 0.62 0.64 0.073 0.088 0.088

aRegions are defined in Figure 12. In each row, the best performing of the three algorithms by each metric is indicated in bold.

of MODIS/AERONET comparisons are presented herein: firstly, looking at only those 10 km×10 km pixels
where all three SDSs (DB, DT, and the merge) provide retrievals passing QA checks, and secondly, validating
the three SDSs independently (i.e., not requiring such pixel-level collocation between the three). These are
referred to as the “collocated” and “all matches” cases, and global and regional statistics are presented in
Tables 2 and 3, respectively. The “collocated” set is useful for comparing contextual biases in the data sets
(related to, e.g., assumptions related to surface/aerosol properties), as there is a direct correspondence in
the individual retrievals from both algorithms included, while the “all matches” set provides an evaluation of
a single algorithm distinct from the others.

The statistical metrics considered in the evaluation are n, the number of MODIS/AERONET matchups; R, the
linear correlation coefficient; the median bias (defined such that positive values indicate a MODIS overesti-
mate); the root mean square error (RMSE); and f , the fraction of MODIS/AERONET in agreement within the
DT algorithm’s expected uncertainty EEDT=±(0.05+0.15𝜏A). Although DB and DT have different expected
uncertainties, presenting statistics here in terms of EEDT (which is defined relative to AERONET and so is
independent of the MODIS data) allows the performance of DB, DT, and the merged SDS to be compared
with each other more directly. Statistics of AERONET comparisons for individual sites are omitted for brevity
but available from the authors on request.

4.3. Site-Level Versus Regional-Level Analyses
A difficulty with aggregated global/regional statistics is the inhomogeneity of AERONET site locations across
the globe (or within a region) and the differences in data volume between sites, meaning that sites are not
weighted equally in combined metrics. Figure 13 presents histograms of differences in validation statistics
from the “collocated” comparison for the 102 sites (out of 111) where at least 25 (three-way DB/DT/merged)
matchups were found. The remaining nine sites are in arid/semiarid areas where DT provides zero or few
retrievals. The threshold of 25 is an attempt to provide some statistical robustness, although broad features
are similar for other thresholds. Differences in R2 are presented rather than differences in R, to better reflect

Table 3. As Table 2, Except for the Three Data Sets Validated Independently (i.e., Not Requiring Pixel-Level Collocation)

Number Number of Matches R Median Bias f Within EEDT RMS Error
Region of sites DB DT Merge DB DT Merge DB DT Merge DB DT Merge DB DT Merge

Global 111 80125 59161 81636 0.89 0.89 0.88 −0.0098 −0.0040 −0.0047 0.72 0.66 0.65 0.13 0.12 0.13
ENA 10 6909 5972 6530 0.80 0.89 0.88 0.0082 0.0012 0.0044 0.82 0.74 0.75 0.066 0.079 0.080
WNA 12 9632 7015 9662 0.81 0.82 0.81 -0.0056 0.029 0.0098 0.80 0.65 0.75 0.096 0.12 0.11
CSA 13 5578 5936 6311 0.90 0.91 0.90 −0.022 −0.033 −0.032 0.73 0.54 0.56 0.14 0.14 0.14
EUR 21 18630 17077 17570 0.85 0.85 0.85 −0.011 −0.0067 −0.0062 0.83 0.73 0.73 0.071 0.082 0.082
NAME 15 16629 5578 17245 0.86 0.80 0.85 −0.0059 0.00075 0.000053 0.55 0.57 0.55 0.17 0.17 0.17
SA 6 2419 2993 3083 0.89 0.78 0.79 −0.032 −0.041 −0.044 0.73 0.58 0.57 0.080 0.10 0.10
IND 7 4250 3034 4326 0.84 0.86 0.83 −0.091 −0.0070 −0.056 0.51 0.70 0.57 0.20 0.17 0.20
NEA 12 8075 5240 8117 0.92 0.93 0.93 −0.013 0.013 0.0031 0.66 0.68 0.67 0.17 0.15 0.16
SEA 9 2231 2763 2764 0.81 0.87 0.87 0.0068 0.035 0.035 0.61 0.51 0.52 0.19 0.17 0.17
OCE 6 5772 3553 6028 0.56 0.63 0.54 −0.0054 −0.036 −0.012 0.82 0.65 0.71 0.070 0.086 0.079
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Figure 13. Histograms of (DB−DT) differences in validation statistics across the ensembles of validation sites used, for
the 102 sites with at least 25 data points. Difference statistics are presented for (a) R2, (b) absolute value of median bias,
(c) f , and (d) RMS error. For each metric, the fraction of sites where each algorithm performs best is indicated toward the
upper left/right of the plot.

the difference in the algorithms to track variability in AOD, and that the difference in absolute bias is pre-
sented rather than the difference in bias itself (as a “better” comparison will have a bias closer to zero, and
not necessarily more positive or negative).

DT has a higher R2 at ∼67% of sites, while DB performs better at ∼60% of sites in terms of f , and ∼55% in
terms of bias and RMS error. The absolute differences in all these metrics are often (but not always) not large,
suggesting that the quality of both algorithms is frequently similar for a given site. If the “all points” rather
than “collocated” matchups are used, quantitatively similar results are obtained.

It is important to recall that the AERONET validation only allows inference about performance of the retrieval
as a whole by analysing the small sample of retrievals near a given site which have a matchup, from the total
population of retrievals near that site. Site-level analysis is not a main focus of this study due in part to small
sample sizes leading to difficulty in determining the true population performance of DB and DT at sites
robustly from the available smaller sample performance (i.e., difficulties inherent in inferring broader-scale
performance from the sample of points where matchups with AERONET are obtained). For example, for two
correlated variables (here 𝜏A and 𝜏M) sample correlation coefficients (here, R) converge to the underlying
true population correlation coefficient as sample size tends to infinity, but for smaller samples, the estimate
of the true correlation coefficient is more uncertain. For a population of paired data with a true correlation
coefficient of 0.7 (common at some AERONET sites), 129 data points are required to estimate R within ±0.1
(i.e., the confidence range 0.6–0.8) for a single data set with 95% confidence [Schonbrödt and Perugini, 2013].
Determining the sign of the difference between the two algorithms’ true correlation coefficients is corre-
spondingly more difficult. Hence, as differences between DB and DT R against AERONET at an individual site
are often 0.05 or smaller, it is often not possible to infer robustly which algorithm is performing better for
an individual site. Thus, upscaling to regional analysis and/or stratification of data by other means (e.g., with
respect to surface or aerosol properties) are advantageous to infer retrieval performance more robustly. The
same argument also applies to the other statistical metrics.

5. Discussion and Usage Recommendations
5.1. Dependence of Retrieval Error on Surface Cover
The DT algorithm parametrises surface reflectance based on a swIR NDVI, hereafter NDVIsw, defined (𝜌1.24 −
𝜌2.12)∕(𝜌1.24 − 𝜌2.12), where 𝜌1.24 and 𝜌2.12 indicate TOA reflectance corrected for gaseous absorption at the
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Figure 14. Median NDVIsw for each AERONET site, from the
“collocated” set of DB/DT/AERONET matchups.

MODIS bands centred near 1.24 and 2.12 μm,
respectively [Levy et al., 2007]. Like the standard
(red/nIR) NDVI, more positive values of NDVIsw

tend to be associated with increased cover of
green vegetation, although the longer wave-
lengths used mean that NDVIsw is less strongly
affected by atmospheric scattering/absorption
[Karnieli et al., 2001]. The median NDVIsw observed
at each site for the “collocated” set of matchups is
shown in Figure 14. Permanently arid sites, partic-
ularly in elevated terrain, tend to have NDVIsw< 0.2,
while other arid sites and sites with seasonal vari-
ations in extent of vegetation often lie in the
region 0.2< NDVIsw< 0.4. Higher values are associ-
ated with more densely vegetated sites, with the
maximum value observed around 0.8.

Analysing dependence of AOD error on NDVIsw in conditions of low aerosol loading provides a compari-
son of DB/DT performance for those cases where the relative contribution to total uncertainty arising from
surface reflectance assumptions is highest, using NDVIsw as a proxy for surface type. Figure 15 shows the
distribution of DB and DT retrieval error as a function of NDVIsw, for low-AOD conditions (𝜏A<0.2; 33,321
points, corresponding to 68% of the “collocated” data set). DB shows little dependence of error (in terms of
median bias, or spread of the error), while the pattern for DT is more complicated. The data can be divided
into four regimes with different attributes, over the following approximate ranges of NDVIsw:

1. NDVIsw< 0.2. For the lowest NDVIsw, the DT median bias is positive, gradually becoming negative (from
0.03 to −0.04) as NDVIsw increases, while the DB median bias is more stable (changing from 0 to −0.02).
The DB data are also much more tightly clustered around this median bias than DT.

2. 0.2< NDVIsw< 0.4. Here DB and DT biases are both fairly stable, around −0.01 for DB and −0.03 for DT. The
difference (DB higher by 0.02) corresponds to the typical offset observed between the two over many
partly vegetated regions (e.g., Figure 4). The spread of DB data is narrower than for DT.

3. 0.4< NDVIsw< 0.6. Here DB and DT have a very similar median bias of order 0 to −0.01. The negative tails
of the error distributions are similar, although DT has a larger positive tail (i.e., is slightly more prone to
high-biased outliers). Overall, the error characteristics of DB and DT are similar in this range.

4. NDVIsw> 0.6. For the highest NDVIsw, the DB median bias becomes increasingly negative (down to −0.03)
while the DT median bias remains comparatively closer to zero. Both algorithms’ spreads of retrieval error
narrow down.

Error statistics for DB, DT, and the merge in this low-AOD regime are tabulated in Table 4. The merge slightly
outperforms DB and DT in terms of correlation (R = 0.58 as compared to 0.55 and 0.54, respectively). The
low correlation in all cases is a result of the fact that, by restricting to low-AERONET AOD conditions, the
dynamic range of “true” AOD is small and the retrieval uncertainty comparatively large. For all algorithms,
the fraction matching AERONET within EEDT is substantially higher than the “target” value of 68%; DB has
the best performance by this metric. This suggests that DT performs better than its stated global-average
uncertainty in these conditions, which may therefore be revised to be more narrow. Note that DB is also
evaluated relative to the DT error metric to permit a direct comparison here; however, the DB uncertainty
estimate as provided within the data set [Sayer et al., 2013] drops to ∼0.03 in the lowest-AOD conditions,
compared to 0.05 for DT, which is consistent with these results (i.e., smaller errors in low-AOD conditions for
DB compared to DT). DB also has a slightly lower RMS error (0.062) than DT (0.077) and the merge (0.071) in
these conditions.

For 𝜏A >0.4 (not shown), these patterns no longer hold, with no dependence of error on NDVIsw. The
higher AOD means that assumptions about aerosol optical properties become comparatively more impor-
tant to determining the total retrieval error. The presence of aerosols in the atmosphere also acts to blur
spectral contrast in TOA reflectance measurements such that the dynamic range of NDVIsw is smaller.
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Error vs. swIR NDVI, τA<0.2
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Figure 15. Error in MODIS AOD as a function of NDVIsw, for
low-AOD conditions (𝜏A<0.2), from the “collocated” set of
DB/DT/AERONET matchups. DB data are shown in blue and
DT in green. Symbols show the median error (and horizontal
lines the standard deviation of NDVIsw in each bin, for a total
of 50 evenly populated bins). Solid colored lines indicate the
central 68% of the data, and dashed colored lines the central
90%. The line of zero difference is shown in red.

5.2. Dependence of Retrieval Error on
Aerosol Properties
The chief parameters determining the magnitude
and spectral dependence of the aerosol contri-
bution to TOA reflectance through the visible
and swIR wavelength range are the total AOD,
particle size, and SSA. The DB and DT algorithms
use different aerosol optical models, and in the
absence of correlative ground-truth information
on a case-by-case basis, it is impractical within
the scope of this study to exhaustively examine
each of these factors on a regional basis, partic-
ularly as the algorithms also use some different
MODIS bands. What is more practical and readily
available is to use AERONET 𝛼 (determined over
the wavelength range 440-870 nm) as a first-order
indicator of the optical dominance of fine-mode
or coarse-mode aerosols within an atmospheric
column [e.g., Eck et al., 1999], to make some
generalisations about algorithm perfor-
mance for fine/coarse-dominated aerosols in
high-AOD regimes.

This is presented in Figure 16, for 𝜏A >0.4 from the “collocated” set of matchups, for the three cases of 𝛼 <0.7
(1228 points; aerosol likely dominated by mineral dust); 0.7< 𝛼 <1.3 (1620 points; aerosol likely a mixture
of fine- and coarse-mode aerosols, or fine mode dominated under conditions of high humidity) and 𝛼 >1.3
(2973 points; aerosol likely dominated by small particles such as smoke or industrial pollution).

For dust-dominated cases (𝛼 <0.7), DB has a fairly AOD-independent median bias around −0.15 while the
DT median bias is closer to zero but becomes more negative with increasing AOD (to −0.35 at 𝜏A ∼1.4). The
DB data show a narrower spread of error throughout. For mixed aerosols (0.7< 𝛼 <1.3), the DT bias is persis-
tently closer to zero while the DB bias is similar to the dust-dominated case, and the DB error spread is again
narrower. Thus, a user’s preferred data set for analysis of these conditions may be dependent on whether
overall bias or absolute uncertainty is more important. For fine-mode-dominated aerosols (𝛼 >1.3), DT has
very little median bias while the DB bias is slightly more negative than in the other two aerosol regimes; the
spread of uncertainty envelopes is similar for the two algorithms.

Error statistics for DB, DT, and the merge in these high-AOD regimes are tabulated in Table 4. The RMS error
is similar in all three data sets, for a given AOD/𝛼 stratification. Biases tend to be negative, and DT biases
tend to be least negative. DB has highest correlation of the three for the low and moderate 𝛼 groupings
(dust-dominated and mixed aerosols), but lowest fraction matching within EEDT. Note that because of the
requirement for all three data sets containing valid retrievals, this analysis excludes dust over bright deserts,
where DB is the only algorithm providing data. For fine-mode dominant aerosols (𝛼 >1.3), the situation is
reversed, with DT and the merge having the highest correlation but DB the most points matching AERONET
within EEDT.

Table 4. Statistics of MODIS/AERONET Comparison of AOD at 550 nm, for the Data Collocated on an Individual MODIS Retrieval-Level, Stratified by AERONET
Aerosol Characteristicsa

Number R Median Bias f Within EEDT RMS Error
Region of Matches DB DT Merge DB DT Merge DB DT Merge DB DT Merge

𝜏A < 0.2 33321 0.55 0.54 0.58 −0.010 −0.010 −0.012 0.84 0.70 0.72 0.062 0.077 0.071
𝜏A > 0.4, 𝛼 < 0.7 1228 0.83 0.77 0.78 −0.16 −0.095 −0.13 0.43 0.49 0.44 0.28 0.28 0.28
𝜏A > 0.4, 0.7 < 𝛼 < 1.3 1620 0.87 0.84 0.84 −0.10 −0.025 −0.037 0.57 0.59 0.58 0.22 0.24 0.24
𝜏A > 0.4, 1.3 < 𝛼 2973 0.79 0.83 0.83 −0.072 −0.00079 −0.0020 0.62 0.58 0.58 0.22 0.21 0.21

aIn each row, the best performing of the three algorithms by each metric is indicated in bold.
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(a) Error vs. AOD, τA>0.4, α<0.7
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(b) Error vs. AOD, τA>0.4, 0.7<α<1.3
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(c) Error vs. AOD, τA>0.4, α>1.3
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Figure 16. As Figure 15, except binned as a function of 𝜏A
for high-AOD conditions (𝜏A >0.4) and (a) 𝛼 <0.7, (b) 0.7<
𝛼 <1.3, and (c) 𝛼 >1.3. A total of 12 evenly populated bins
are used in Figures 16a and 16b, and 20 for Figure 16c. Red
lines indicate zero difference and ±(0.05+0.15𝜏A).

Although DB has (on median average) a more neg-
ative bias than DT in these high-AOD conditions,
Figure 16 suggests that this trend reverses for
the highest-AOD events in dust-dominated cases,
while the negative DB-DT relative bias observed
at the highest AODs (Figure 11) comes predom-
inantly from mixed and fine-mode-dominated
aerosol distributions. Unfortunately, comparatively
poor sampling of regimes with extreme high val-
ues of AOD (the 99th percentile of 𝜏A for this set
of matchups is 1.2) limits generalisations about
performance which can be made for the most
extreme events, which are better suited to individ-
ual case studies, and lie outside the scope of the
present work.

In contrast to section 5.1, in high-AOD condi-
tions the fraction of points matching AERONET
within EEDT is substantially lower than the “tar-
get” value of 68%. This suggests that DT performs
more poorly than its stated uncertainty in these
conditions, which may need to be made broader.
Note that the DB uncertainty estimate as pro-
vided within the data set [Sayer et al., 2013] tends
to ∼20% in the highest-AOD conditions, com-
pared to 15% for DT. This is again consistent with
these results for the low- and moderate-𝛼 points,
i.e., larger errors in high-AOD conditions for DB
compared to DT.

5.3. Dependence of Bias on Surface Altitude
and Solar/View Geometry
As a counterpart to Figures 11c–11f, Figure 17
shows the median bias in DB, DT, and merged AOD
as a function of surface altitude and solar/view
geometry. Although sampling is very different
(AERONET matchups rather than all retrievals), sim-
ilar general tendencies are observed. Specifically,
the negative DB-DT difference at high elevation
is linked to a negative bias in DB AOD compared
to AERONET (most pronounced for the few sites
above 2 km), while DT oscillates between small
positive and negative biases in this regime. The
negative DB-DT difference for solar zenith angles
smaller than 20◦ is linked to negative biases of
DB, and positive biases of DT, relative to AERONET.
Interestingly, the merged data set is unbiased on
average here; the tropical areas at which these

solar zenith angles are encountered are also the regions/seasons where the merged data set draws more fre-
quently from both the DB and DT algorithms. Tendencies of median bias with respect to view zenith angle
and scattering angle are small. The merged SDS is intermediate, although tends to be closer to DT, as in this
subset of data the merged SDS draws more often from DT than DB.

5.4. Regional Discussions
The discussion in this section uses mainly the “all matches” set of MODIS-AERONET matchups to illus-
trate individual data sets’ performance. However, a similarity in statistics between the “collocated” and “all
matches” matchup sets, both on a global/regional level (Tables 2 and 3) and on a site-by-site basis (not
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(d) AOD error vs. scattering angle
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Figure 17. Median bias in MODIS AOD as a function of (a) surface altitude, (b) solar zenith angle, (c) view zenith angle,
and (d) scattering angle, from the “collocated” set of DB/DT/AERONET matchups. DB data are shown with blue diamonds,
DT with green triangles, and the merge with red squares. The line of zero difference is dashed.

shown), suggests that performance does not generally vary much between those cases where only DB or DT
retrieves as compared to those cases where both do.

Figure 18 shows the “best” algorithm at each site according to various evaluation metrics (i.e., highest data
volume, highest correlation, highest fraction matching within EEDT, and lowest RMS error). Sites coloured
golden brown (the category “merged is equal”) indicate that the merged SDS and one of the other algo-
rithms both perform equally superior to the other; examples include some desert regions (where the merge
is completely DB and so by definition DB and the merge perform equally well) or some parts of the Ama-
zon (where the merge is completely DT). The category “merged is superior,” in contrast, indicates those sites
where the merged SDS is superior to both DB and DT by the given metric, often due to seasonal variations
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Figure 18. Maps showing the best performing of the MODIS aerosol SDS by different statistical metrics: (a) the data
count, (b) correlation coefficient, (c) fraction of points matching AERONET within EEDT, and (d) RMS error.
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Figure 19. As Figure 18, except only for those sites where DB and DT both have at least 50 matchups with AERONET
and performance differs by at least some threshold value: (a) 20% data count difference, (b) 0.1 difference in correlation
coefficient, (c) 0.1 difference in fraction of points matching AERONET within EEDT, and (d) 0.03 difference in RMS error.

in algorithm performance and seasonal variations in how the merged SDS is populated at a given site. Thus,
for an ideal merging algorithm, each site and each metric would be colored a mixture of golden brown and
red. Caution is advised in interpretation of this map, however, as the numerical difference in quality of the
comparison is often small. Figure 19 provides a more quantitative view, by only showing sites where both
algorithms provide at least 50 matchups with AERONET, and for a given metric, the DB and DT performance
difference exceeds some threshold (20% in n, 0.1 in R, 0.1 in f , or 0.03 in RMS error, dependent on panel).
This typically removes about half the sites for which DB and DT performance by that metric are similar
and so facilitates identification of those sites for which one algorithm does perform significantly better by
that metric.

Regional-scale statistics are provided as many users analyse MODIS aerosol data on a regional basis.
Figures 18 and 19 reveal regional differences in performance between the algorithms but also differences
between sites within individual regions. As is unsurprising based on the analysis so far, neither DB/DT nor
the merged SDS consistently outperforms the others in all statistical metrics for all regions of the world.
On a global basis, for both the “collocated” and “all matches” sets of matchups, DB has a larger fraction
of matchups agreeing with AERONET within ±(0.05+0.15𝜏A), while DT and the merge have a median bias
nearer to zero. Correlations are effectively identical. For the “all matches” analysis, the merged SDS provides
about 1% more collocations with AERONET than DB; both provide about 35% more matchups on global
aggregate than DT, in large part due to a lack of DT coverage in arid parts of (primarily) the NAME, NEA, and
OCE regions. However, validation statistics are site-specific, as sections 5.1, 5.2, and 5.3 show the C6 data sets
contain contextual errors, and regions are often not homogeneous in terms of aerosol or surface properties.
Thus, although the comments below are framed in a regional context, data users are encouraged to bear the
site-specific nature of validation in mind. Gaps in the validation network mean that the unknown retrieval
quality in the absence of AERONET data must be inferred from similar regimes, which may not necessarily
be in the same geographic region.
5.4.1. Coverage-Limited Areas
Figure 7 showed that in some areas the spatial coverage between the two algorithms is so different that it
is likely to be the determining factor in which data set to choose. The most prominent such area is NAME;
the bulk is desert surfaces which are too bright for the DT algorithm, and so DT coverage in NAME is largely
restricted to several sites in the Sahel and Israel. The major aerosol type in NAME is wind-blown mineral
dust, although over the Sahel contributions from biomass burning aerosols and industrial sources are also
important [Pandithurai et al., 2001; Roberts et al., 2009]. As discussed by Sayer et al. [2013], DB performance
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in this region is poorer than on global average, with an overall tendency to underestimate AOD, although
performance has improved since C5. The correlation coefficient between DB and AERONET is high (0.86),
indicating good ability to track changes in AOD. For the sites where both DB and DT provide retrievals, DB
tends to perform better in the Sahel, while DT performs better at Nes Ziona (31.9◦N, 34.8◦E) and Forth Crete
(35.3◦N, 25.3◦E). The merged SDS provides slightly poorer comparative statistics against AERONET than DB
alone, indicating that those Sahelian sites for which the merged SDS draws from DT the quality of the data
set is reduced. For applications in this region, from both retrieval coverage and quality points of view, DB
seems the most appropriate choice. Other arid areas where DT coverage is limited or absent include deserts
in central and eastern Asia, central Australia, parts of southern Africa and parts of Spain.

In tropical forested areas, DT coverage is significantly higher than DB, associated primarily with cloud/QA
masking (section 3.2). This includes much of tropical South America and Africa, as well as the “Maritime Con-
tinent” (MC) in tropical Asia. Existing AERONET coverage is limited in all these areas. At the tropical African
site of Mbita (0.4◦S, 34.2◦E), DT performs better than DB and provides a significantly higher data volume
(443 compared to 48 matchups). Sites in the MC either have short (at present) data records or are in complex
coastal environments where, combined with the high cloud cover, retrievals frequently are not attempted
or fail [Reid et al., 2013], and/or AERONET data may suffer from cloud contamination (e.g., the Singapore
site; 1.3◦N, 103.8◦E) [Chew et al., 2011]. The establishment of additional AERONET sites in the MC in recent
years [e.g., Salinas et al., 2013] should help pave the way for more robust estimates of retrieval performance.
Recent and ongoing field campaigns such as AERONET’s Distributed Regional Aerosol Gridded Observation
Networks (DRAGON; http://aeronet.gsfc.nasa.gov/new_web/dragon.html) provide useful case studies in the
MC and elsewhere. Analysis of C6 MODIS data during these campaigns is planned for the future, although
out of the scope of the present study.
5.4.2. Dominantly Low-AOD Areas
Much of the regions ENA, WNA, and EUR, are characterised by typical 𝜏A∼ 0.1–0.2 and vegetated, subur-
ban, or urban surfaces over fairly flat, low-lying terrain, sampling periodic cases of transported aerosols
such as wildfire smoke [e.g., van der Werf et al., 2010] or transported mineral dust. As such in most cases
the error characteristics of the retrievals are as discussed in section 5.1. In general for these sites DT has a
slightly higher correlation with AERONET and smaller bias, while a higher fraction of DB matches agree with
AERONET within EEDT, and the RMS error of DB data is often slightly lower. The DB data volume is also often
higher (Figure 7). However, at most sites in this category, performance of both algorithms is better than
global average; coupled with the analysis in section 3, showing DB and DT provide very similar retrievals
which are in agreement with each other more frequently than their global-average uncertainties would sug-
gest, it is likely that any of the data sets would be suitable for quantitative scientific analyses in this region.
These conditions are also found at some sites in southern CSA, and boreal parts of NEA.

Urban areas are also present in these regions, such as the CCNY site in New York City (48.2◦N, 73.9◦W). Here
DB has a smaller median bias (0.025 vs. 0.083), RMS error (0.07 vs. 0.15), and higher fraction within EEDT (0.76
vs. 0.42) than DT, along with a higher data volume. Urban terrain is known to pose a problem for the DT
algorithm [e.g., Levy et al., 2010; Hyer et al., 2011], and work is underway to address this. DB does not exhibit
obvious urban biases. The merged SDS mainly draws from DT at this site so is not optimal.

These regions also all contain semiarid and mountainous areas. Examples are provided by sites in WNA;
at Frenchman Flat (36.9◦N, 115.9◦W) and Railroad Valley (38.5◦N, 116.0◦W), two sites in elevated semiarid
regions of Nevada (USA), DT has a persistent high bias while DB retrieves a lower AOD (even in cases where
AERONET AOD is high). The AERONET AOD is fairly persistently low; thus, DB matches more often within
EE, although DT has higher correlation as it is better able to identify isolated extreme high-AOD events. At
Rimrock (46.5◦N, 117.0◦W), a more vegetated area on the edge of the Rocky Mountains, both algorithms are
in better agreement with AERONET.

OCE also falls into this category (note all sites considered are in Australia); AOD over Australia is typically
<0.2, with high-AOD events mostly results of (local or transported) smoke from wildfires, and mineral dust
[Qin and Mitchell, 2009]. Thus, many of the same comments apply. Over much of Australia, the terrain is
arid and bright, such that only DB data are available; DT availability is largely confined to coastal regions
and those areas where there is seasonal vegetation cover, such as Canberra (35.3◦S, 149.1◦E). Despite the
differences in surface/aerosol conditions compared to the rest of the continent, statistics of the AERONET
comparisons at Canberra largely mirror those of the region as a whole. DT often retrieves small positive or
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negative AOD over much of Australia, such that DB performs better by most statistical metrics, consistent
with the dependence of error on surface cover shown previously in section 5.1. The correlation coefficient
for both algorithms is lower than in all other regions, reflecting the fact that AOD variability over much of
Australia is often within retrieval uncertainty. The merged SDS offers performance approaching DB in qual-
ity and provides the highest data volume (by drawing on DT in the coastal regions, where DT provides better
sampling). Unfortunately, the remoteness of much of the Australian continent means that large areas lack
ground-truth data.
5.4.3. Dominantly High-AOD Areas
Several geographic regions contain sites with either seasonally or persistently high-AOD conditions. In
CSA, the most well-known feature is the August–October peak biomass burning season [van der Werf et al.,
2010]; most matchups obtained with AERONET are from these seasons, due to high cloud cover at other
times of year. Both algorithms have high correlation coefficients in the range 0.94–0.99, reflecting the large
dynamic range of AOD at these sites (from near-zero up to ∼4). In smoke-laden conditions, DB has a ten-
dency to slightly underestimate AOD, while DT has a tendency to overestimate it. At each of these sites,
approximately 25% more DB than DT matchups agree with AERONET within EEDT (largely because of DT
overestimates in high-AOD conditions); however, DT provides around 20% more matchups than DB (and a
significant number more retrievals overall; Figure 7). CSA also contains sites in the urban areas of Mexico City
(19.3◦N, 99.2◦W) and Tuxtla Gutierrez (16.8◦N, 93.1◦W). Both (particularly Mexico City) are situated in com-
plex geographical and meteorological environments which can lead to the stagnation of polluted air above
them [e.g., Fast et al., 2007] with long high-AOD periods. DB and DT both underestimate AOD at these sites;
DT performs better than DB and the merge, but statistical metrics are still poorer than global average.

Terrain in Southern Africa (SA) ranges from densely vegetated forests in the north through to croplands,
grasslands, and desert in the south, much of it elevated. The main well-known aerosol signal from this region
consists of smoke from biomass burning, although industrial sources are also important [Piketh et al., 1999;
Roberts et al., 2009]. Seasonal variation in smoke aerosol composition has been shown to lead to seasonally
varying biases in satellite-retrieved AOD [e.g., Eck et al., 2013]. The merged SDS draws mostly from DT in
this region, with dry-season contributions from DB in the southern and eastern edges, and DB always used
over mountainous and desert areas (mostly in Namibia and western South Africa). Regional statistics are
dominated by a large number of matchups at Mongu (15.2◦S, 23.1◦E) and Skukuza (25.0◦S, 31.6◦E), for which
DB has a slightly lower data volume but otherwise significantly outperforms DT (smaller bias, RMS lower by
∼40%, and about 30% more points in good agreement with AERONET). The merged SDS draws from DT over
Mongu, and both algorithms over Skukuza, although not in an optimal way. DT performs better than DB (to
differing extents, dependent on site and metric) at the other four sites considered in this region.

Both SEA and NEA are heterogeneous in terms of surface cover and aerosol type, with seasonally vary-
ing contributions from urban/industrial emissions, biomass burning, and mineral dust [van der Werf et al.,
2010; Henriksson et al., 2011; Gautam et al., 2013]. In NEA and SEA, the type dependence of retrieval error
(section 5.2) means that the different algorithms may perform better or worse in different seasons and
at different locations, due to the variety of aerosol type. The merged SDS may be most suitable for most
regional-scale applications, as it provides the best coverage, although studies focussed near a single
AERONET site may wish to use either (or both) DB or DT. At individual sites, DB data often give a better over-
all agreement with AERONET (in terms of matching within EE), although DT may represent AOD during
extreme events more accurately.

The portion of southern Asia around the Indian subcontinent (IND) also fits in this category. The major-
ity of AERONET sites used in IND are in or near the Indo-Gangetic Plain (IGP), with the exception of Pune
(18.5◦N, 17.8◦E) in western India. The aerosol loading across IND is tremendously complex and tied to the
monsoon system, with local and transported dust from the west and mixed urban/industrial and smoke
(from a variety of sources) over the IGP and elsewhere [e.g., Yadav and Rajaman, 2004; Ramanathan et al.,
2005; Gautam et al., 2011; Henriksson et al., 2011]. Aerosol over Pune is from similar sources, with dust from
the Thar Desert and Arabian Peninsula most common from May–September and optical dominance of
industrial/biomass-burning sources at other times of the year [Devara et al., 2014]. The IGP is also one of the
areas of largest disagreement between DB and DT (Figure 4). On comparison with AERONET, the difference
in seasonality at sites in the IGP can be traced to DB underestimating AOD and DT overestimating AOD, to
different extents at different sites, and these biases being largest in the monsoonal months (July/August)
and smallest in DJF. Thus, both algorithms report a similar overall shape of seasonality but DB underesti-
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mates and DT overestimates the magnitude of seasonal variability of AOD. These errors are, to an extent,
averaged out in the merge, which takes data from both algorithms at different times of year. For most of
these sites, the biases typically lie within or close to the algorithms’ expected uncertainty, and overall per-
formance is very similar. However, for Pokhara (28.2◦N, 84.0◦E), Jaipur (26.9◦N, 76.8◦E), and Karachi (24.9◦N,
67.0◦E), the latter two being arid areas with a strong dust influence, DB more persistently underestimates
AOD. The DB underestimation of AOD at these last two sites are found in all seasons, suggesting perhaps an
overestimated surface reflectance and/or overestimated aerosol SSA. Because of the arid surface cover, DB
spatial coverage is much higher than DT. Overall, DT performs best in this region (Tables 2, 3), although the
merged SDS may provide superior seasonality over both DB and DT, due to opposing seasonal biases in and
near the IGP.

5.5. Summary and Looking Forward
The Collection 6 reprocessing of MODIS aerosol products is the result of the cumulative effort of many
groups, not only the MODIS science teams but also groups working to maintain the calibration of the
sensors, groups involved in ground-based aerosol monitoring, and groups who have used and analysed pre-
vious versions of the data sets in detail. Both the DB and DT algorithms have been updated and this study
has sought to provide a comparison of the two to help illustrate their regional and global similarities and
differences, and to provide some recommendations for data usage. Whichever algorithm is chosen for a par-
ticular analysis, it is strongly advised that data users apply the quality assurance (QA) filters provided with
the data sets, and the C6 products contain some prefiltered SDSs for this purpose (Table 1).

Comparison against AERONET is the standard method for evaluation of AOD retrieved from spaceborne
sensors and represents the best that can be done on a large scale. Algorithm refinements between different
data versions, while generally physically based, are still normally evaluated in terms of changes in validation
statistics against AERONET; thus, the C6 algorithms (and others) are inherently optimised to a degree against
these AERONET sites. As such identified regional/contextual errors are useful to make recommendations
about which of DB and/or DT to use, but it is not guaranteed that these can be transferred quantitatively to
represent the (unknown) retrieval error away from AERONET sites. Users should bear this important point
in mind.

Due to the complexity of the global Earth (surface and atmospheric) system, and the optimization of the
algorithms for global rather than regional applications, neither algorithm consistently performs better than
the other. To make some general comments, over much of the global land surface, the AOD retrieved by
the algorithms and the level of agreement with AERONET are similar, such that it may not matter for many
applications which of DB or DT a user chooses. DT often has a better correlation with AERONET than DB,
but DB has (outside of tropical regions) greater spatial coverage, and tends to have smaller error compared
to AERONET values in low-AOD conditions. DB and DT often exhibit much smaller AOD differences than
would be expected given their estimated individual uncertainties, which should not be taken to mean that
they have converged on the truth, but is a reminder that they should not be considered to be independent
data sets.

Despite the improvements from C5 to C6 various aerosol/surface type-dependent uncertainties have been
identified in both algorithms and are often similar to those identified in the C5 land data sets [e.g., Hyer et al.,
2011; Shi et al., 2013], notably some systematic (and often opposing) biases in high-AOD conditions and for
elevated scenes. Thus, bias correction techniques developed for the C5 over-land data sets [Hyer et al., 2011;
Shi et al., 2013] are likely to remain applicable, although specific coefficients will need to be recalculated. The
continued presence of some of these contextual biases in C6 suggests that to remove them in future data
versions may require a larger-scale overhaul of the underlying physical basis of the retrievals, rather than
minor refinements. Conversely, in a few areas (for example, the DT algorithm in India; cf. Figure 1 of Levy et al.
[2013]), the C6 data can differ significantly from the previous C5. As a result, it is possible that some results
obtained using older version(s) of MODIS data may differ quantitatively.

A new feature of C6 is the “merged” SDS, designed with the intention of providing a single data set combin-
ing the best of DB and DT into a data product with fewer gaps. MODIS aerosol product users are encouraged
to make their own decisions about which data set(s) to use for their particular needs, given the similarities
and differences between the two algorithms. This is a nontrivial task, and the C6 merged SDS represents a
first attempt in this direction. The analysis has shown that, while not optimal (i.e., not persistently outper-
forming DB/DT), the current merged SDS nevertheless does provide a data set which will be suitable for
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quantitative scientific applications. In particular, as only DB provides coverage over deserts, and there is only
one over-ocean algorithm, the merged SDS is useful as a more spatially complete data set than was available
previously from these MODIS data products.

This study has provided an overview and initial analysis of the MODIS Aqua C6 products, with the intent
of introducing users to key features of the data sets and their differences, and provide a first comparative
validation. An individual study is necessarily limited in scope, and further studies will be able to expand
upon this to improve the characterization of the new data sets. This analysis has considered only MODIS
Aqua data, as Terra data are not available at present. It is expected that results for Terra will be quantitatively
similar, although there may be subtle differences, as were found in C5 [e.g., Levy et al., 2010], due to a com-
bination of sensor calibration and sampling a slightly different part of the local diurnal cycle. The release
of MODIS Terra data will also enable comparison of the C6 aerosol products with those from the Multian-
gle Imaging Spectroradiometer (MISR) [Martonchik et al., 1998; Kahn et al., 2010], which also flies on Terra.
This analysis focused on AOD at 550 nm, which is the primary data product from both algorithms. Some
work has been done to evaluate AOD at other wavelengths and 𝛼 from DB data [Sayer et al., 2013]; these
products have been removed or relegated to “diagnostic” status in the C6 DT data set due to limited infor-
mation content of the measurements [Levy et al., 2010]. Additional important future work should include
analysis of current and historical field campaign data, as well as case studies of extreme events (to identify
aerosol-related issues) and some low-AOD cases (to identify regional differences and issues related to sur-
face reflectance treatment), which will assist further in understanding and refinement of both the DB/DT
retrieval algorithms and the data “merging” procedure.
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