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Abstract. To answer fundamental questions about aerosols

in our changing climate, we must quantify both the cur-

rent state of aerosols and how they are changing. Although

NASA’s Moderate Resolution Imaging Spectroradiometer

(MODIS) sensors have provided quantitative information

about global aerosol optical depth (AOD) for more than

a decade, this period is still too short to create an aerosol

climate data record (CDR). The Visible Infrared Imaging

Radiometer Suite (VIIRS) was launched on the Suomi-NPP

satellite in late 2011, with additional copies planned for fu-

ture satellites. Can the MODIS aerosol data record be contin-

ued with VIIRS to create a consistent CDR? When compared

to ground-based AERONET data, the VIIRS Environmen-

tal Data Record (V_EDR) has similar validation statistics

as the MODIS Collection 6 (M_C6) product. However, the

V_EDR and M_C6 are offset in regards to global AOD mag-

nitudes, and tend to provide different maps of 0.55 µm AOD

and 0.55/0.86 µm-based Ångström Exponent (AE). One rea-

son is that the retrieval algorithms are different. Using the

Intermediate File Format (IFF) for both MODIS and VIIRS

data, we have tested whether we can apply a single MODIS-

like (ML) dark-target algorithm on both sensors that leads to

product convergence. Except for catering the radiative trans-

fer and aerosol lookup tables to each sensor’s specific wave-

length bands, the ML algorithm is the same for both. We

run the ML algorithm on both sensors between March 2012

and May 2014, and compare monthly mean AOD time se-

ries with each other and with M_C6 and V_EDR products.

Focusing on the March–April–May (MAM) 2013 period, we

compared additional statistics that include global and grid-

ded 1◦× 1◦ AOD and AE, histograms, sampling frequen-

cies, and collocations with ground-based AERONET. Over

land, use of the ML algorithm clearly reduces the differences

between the MODIS and VIIRS-based AOD. However, al-

though global offsets are near zero, some regional biases

remain, especially in cloud fields and over brighter surface

targets. Over ocean, use of the ML algorithm actually in-

creases the offset between VIIRS and MODIS-based AOD

(to ∼ 0.025), while reducing the differences between AE.

We characterize algorithm retrievability through statistics of

retrieval fraction. In spite of differences between retrieved

AOD magnitudes, the ML algorithm will lead to similar de-

cisions about “whether to retrieve” on each sensor. Finally,

we discuss how issues of calibration, as well as instrument

spatial resolution may be contributing to the statistics and the

ability to create a consistent MODIS→VIIRS aerosol CDR.

1 Introduction

Aerosols are important components of the climate system,

and to answer fundamental questions about our changing cli-

mate, we must quantify the role of aerosols and how those

aerosols are changing over time. The magnitude of aerosol

forcing is difficult to assess because their loading and prop-
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erties vary in space and time due to intermittency of some

sources (e.g., fires, volcanoes and wind-driven dust), variable

weather that affect transport and sinks, and secular trends

caused by human policy. While the Intergovernmental Panel

on Climate Change (IPCC, 2013) has recently reported re-

duced uncertainty as to aerosol loadings and aerosol radiative

forcing effects on a global scale, it is also clear that changes

in aerosol are regional.

Whether aerosol loadings are increasing or decreasing de-

pends on location. For example, aerosols have decreased dra-

matically over eastern Europe and increased over India and

China (Chin et al., 2013). Regional aerosol changes (Zhang

and Reid, 2010) affect regional weather and local air quality,

with regional effects having global consequences, including

health (e.g., van Donkelaar et al., 2010) and economic con-

sequences (Lin et al., 2014). Therefore, it is imperative that

the community has a consistent, long-term aerosol data set,

which is global in construct, but with resolution and accuracy

sufficient to resolving regional trends.

To this end, the European Space Agency (ESA), through

their Climate Change Initiative (CCI) has recently identified

some Essential Climate Variables (ECVs) to monitor (e.g.,

Hollmann et al., 2013). One ECV is aerosol optical depth

(AOD), and the World Meteorological Organization has set

some “targets” for its measurement characteristics (GCOS,

2011). Specifically, for an AOD data set to be considered

a climate data record (CDR; e.g., NRC, 2004), it should be

able to be measured globally, every 4 h, at a resolution of 5–

10 km, with accuracy of±(0.03+10 %) and stability of 0.01

per decade. A data record of at least 30 years is a suggested

minimum for assessing global change.

The satellite aerosol record does span more than 3 decades,

if retrievals from the Advanced Very High Resolution Ra-

diometer (AVHRR) and Total Ozone Measurements (TOMS)

are considered. Yet, these instruments are limited in their

spectral and spatial information content, and also by their

lack of consistent sampling (due to changes in orbit) and

calibration. Attempts to stitch AVHRR and TOMS time se-

ries into more modern aerosol records (Mishchenko et al.,

2007a; Chan et al., 2013; Zhao et al., 2013) have helped to

derive global trends (e.g., Torres et al., 2002; Mishchenko

et al., 2007b, 2012), but their large differences in sampling

and retrieval capability make it difficult to determine regional

trends. Because the long-term aerosol variability is small

(global trends of < 0.01 decade; e.g., Hsu et al., 2012) and

usually embedded in the much larger variability associated

with the shorter (such as seasonal) time scale, we require

not only a long-term data set, but also one that is consis-

tent across instrument sampling, calibration and retrieval al-

gorithms (e.g., Weatherhead et al., 1998).

NASA’s space-borne Earth Observing System (EOS) sen-

sors have been observing the Earth system (land, oceans

and atmosphere) for over 15 years. While not meeting re-

quirements of 4 times daily observation, the EOS system ob-

serves aerosol over nearly the entire globe, with spatial and

temporal resolution sufficient to study the regional and lo-

cal scales. One of the primary instruments of EOS is the

Moderate Resolution Imaging Spectroradiometer (MODIS;

Salomonson et al., 1989), which has been flying on Terra

since December 1999 and on Aqua since May 2002. From

MODIS-observed reflectance in the visible (VIS), near-

infrared (NIR) and shortwave-IR (SWIR) wavelength re-

gions, the so-called “dark-target” (DT) aerosol algorithm

(e.g., Levy et al., 2007a, b, 2010, 2013; Remer et al., 2005,

2008) has been retrieving total aerosol optical depth (AOD)

at 0.55 µm over land and ocean at nominal 10×10 km spatial

resolution. These MODIS aerosol products are being used for

all sorts of applications, both research and routine, and re-

cently, upgraded retrieval capability has been applied to pro-

duce the Collection 6 (C6; http://modis-atmos.gsfc.nasa.gov)

time series. For a small subset of C6 DT products, Levy

et al. (2013) compared retrieved AOD to ground and ship-

based Aerosol Robotic Network (AERONET) sunphotome-

ter data (Holben et al., 1998; Smirnov et al., 2009), and de-

termined global, one-sigma expected error (EE) envelopes to

be approximately (0.04+10 %;−0.02–10 %) over ocean and

±(0.05+ 15 %) over land. This performance comes close to

the requirements as stated in the WMO document (GCOS,

2011).

Although the MODIS DT retrieval algorithm is mature and

well characterized, both MODIS instruments have exceeded

their designed lifetime. In 2006, Remer et al. (2008) showed

that Terra-MODIS and Aqua-MODIS retrieved nearly iden-

tical aerosol statistics over the ocean. Two years later, Remer

et al. (2008) found that Terra had acquired a 0.015 (12 %) off-

set from Aqua. Over land, the offset was changing with time,

suggestive of calibration drift for Terra (e.g., Levy et al.,

2010). Although steps were taken by the MODIS Calibra-

tion and Support Team (MCST) to reduce the drifting for

C6, it is expected (e.g., Levy et al., 2013) that the Terra-

Aqua offset (∼ 0.015) will remain for C6. However, Lya-

pustin et al. (2014), showed how that with even greater at-

tention to recalibration and normalization, it may be possible

to homogenize the Terra-Aqua aerosol records.

Regardless of continued re-calibration and reprocessing

of the MODIS data, MODIS will be decommissioned by

the early 2020s; there will never be a 30 year AOD record

from MODIS. However, with the launch of the Visible In-

frared Imaging Radiometer Suite (VIIRS) instrument on-

board Suomi-NPP (S-NPP) in late 2011, there is hope that

VIIRS can continue the MODIS aerosol record into the

Joint Polar Satellite System (JPSS) era. VIIRS was designed

to have similar capabilities as MODIS, with similar visi-

ble/NIR/IR spectral channels, similar spatial and temporal

resolution, and similar physics behind the retrieval algo-

rithms. In fact, NOAA (through the Interface Data Processing

Segment, IDPS) is already delivering an AOD product (Jack-

son et al., 2013) that is meeting expected accuracies, which

means performing to within similar EE envelopes stated for

the MODIS product (Liu et al., 2014). Although the VIIRS-
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IDPS is providing a quality aerosol product especially over

ocean, the creation of a long-term AOD record not only re-

quires the availability of data, but also that the time series has

no gaps or jumps (Hollman et al., 2013).

Since any potential trend in AOD is likely to be less than

10 % per decade, and global AOD is on order of ∼ 0.2, a cli-

mate data record needs to be able to characterize AOD dif-

ferences of ∼ 0.02 or less. Using one satellite to detect this

aerosol trend requires the ability to separate out background

noise, characterize uncertainty in the retrieval and diagnose

calibration drifts. While aggregation and averaging helps to

beat down uncertainties related to noise and retrieval uncer-

tainty, averaging cannot help a calibration drift.

CDR creation is difficult with one sensor, but becomes

even more difficult when using two. The recent experience

with twin MODIS instruments with the same retrieval al-

gorithms, but on different platforms, highlights how cal-

ibration may confound the issue (e.g., Lyapustin et al.,

2014). Likewise, two instruments on the same platform (e.g.,

the Multi-angle Imaging SpectroRadiometer (MISR) and

MODIS which are both on Terra), do not agree within CDR

specifications (e.g., Liu and Mishchenko, 2008). The differ-

ences in algorithms, sampling and pixel resolution lead to

discrepancies in regional and global AOD and their trends.

MODIS and VIIRS are different instruments on different

platforms. Thus, it follows that even if the VIIRS-IDPS con-

tinues to provide a successful aerosol product, there are many

obstacles to creating a merged aerosol climate data record

from MODIS and VIIRS. These issues were discussed by

Hsu et al. (2013a), to include the following.

– sensor differences,

– calibration/characterization differences,

– sampling (orbital coverage) differences,

– retrieval algorithm differences,

– pixel selection, including cloud and other masking,

– aggregation/averaging from along-orbit products (e.g.,

Level 2), to gridded, global products (e.g., Level 3).

We cannot control the sensor differences, calibration or

how the different platforms orbit around the globe. However,

we can test whether we can homogenize the retrieval algo-

rithm, pixel selection and aggregation strategies, and thus re-

duce the differences between MODIS and VIIRS. We will

briefly describe the current MODIS and VIIRS-IDPS algo-

rithms in Sect. 2, and show that the current VIIRS-IDPS

aerosol product is significantly different from the MODIS

data set for overlapping scenes and statistics. In Sect. 3,

we develop a MODIS-like (ML) algorithm to apply to VI-

IRS spectral observations. In Sect. 4, we compare statis-

tics of our MODIS-like data to the M_C6 and VIIRS-IDPS

products, and also to ground-based sunphotometer measure-

ments. A first attempt at overlapping time series is shown

in Sect. 5. In Sect. 6, we hypothesize why complete conver-

gence may be difficult, along with further avenues to study.

Section 7 concludes that there is nothing inherent in the VI-

IRS sensor itself to prevent the creation of a long-term CDR

with a consistent algorithm to both sensors, but that a reliable

MODIS→VIIRS CDR will take much more work.

2 Comparison of MODIS-C6 and VIIRS-IDPS:

algorithm, sensor and products

2.1 Theoretical perspective

Kaufman et al. (1997a) explains how the clear-sky, top-of-

atmosphere (TOA) radiance, observed by a passive satellite,

is a combination of contributions from two sources: the atmo-

spheric path radiance (including aerosol and Rayleigh scat-

terings) and the contribution from the Earth’s surface (in-

cluding coupling between the surface and atmosphere). Re-

trieval of aerosol properties from this complicated TOA sig-

nal, therefore, requires knowledge about the surface opti-

cal properties and non-aerosol contributions. It also requires

reasonable constraints on the aerosol optical properties. To

a first approximation, the spectral reflectance at the TOA is

ρ∗ = ρa
+ (T ↑T ↓ρs)/(1− [sρs

]), (1)

where ρ∗ is the reflectance at the TOA, ρa is the reflectance

of the atmosphere (also known as the path radiance), ρs is

the surface reflectance, s is the upscattering ratio, and T ↑

and T ↓ are the atmospheric transmissions (up and down) of

the surface reflectance. Except for s, all of these terms have

angular and wavelength dependence. Except for the surface

reflectance, all terms depend on the aerosol type and column

loading. The path radiance term also includes contributions

from Rayleigh (molecular) scattering.

Equation (1) is the basis of aerosol remote sensing for

MODIS, but there are many different approaches to apply-

ing this equation. Although there are many additional algo-

rithms, Table 1 lists three of the aerosol algorithms developed

and now currently used for retrieval aerosol properties from

MODIS.

The first two of these algorithms we denote as dark-

target (DT) algorithms, which are separated into over ocean

(DT_O; Tanré et al., 1997; Remer et al., 2005; Levy et al.,

2013) and over land (DT_L; Kaufman et al., 1997a; Re-

mer et al., 2005; Levy et al., 2007a, b, 2013). Both are ex-

plicit aerosol retrieval algorithms that result in aerosol prod-

ucts that are packaged and presented as parameters within

standard Terra (MOD04) or Aqua (MYD04) aerosol product

files (collectively denoted as MxD04). These algorithms are

“dark-target” because they are used for scenes where Earth’s

surface has low reflectance (is dark) in selected VIS, NIR

and SWIR wavelengths. These wavelengths are also in win-

dow regions of the atmosphere (have small gas absorption).

Since the surface reflectance is relatively small, the aerosol
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Table 1. Three MODIS products and their references.

Index MODIS Geophysical MODIS L2 References

procedure parameters product name

DT_O Dark-target aerosol AOD, fine fraction MxD04 Tanré et al. (1997);

over ocean Remer et al. (2005)

DT_L Dark-target aerosol AOD MxD04 Kaufman et al. (1997);

over land Remer et al. (2005);

Levy et al. (2007a, b)

AC_L Atmospheric Surface reflectance MxD09 Vermote et al. (1997);

correction over land Vermote and Kotchenova (2008)

signal is a major component of the TOA signal. The portion

of the TOA signal attributed to aerosol can be estimated with

radiative transfer, and using lookup tables (LUTs), one can

retrieve the properties of the aerosol (AOD and aerosol type

or model) that contributed to this aerosol portion. In this pro-

cess, by iterating through increasing values of AOD and vari-

ous candidate aerosol models, the algorithm finds an optimal

solution that best matches the reflectance measurements to

the theoretical (LUT) values at the TOA.

The DT algorithm constrains the surface (either implic-

itly or explicitly). With DT_O, the surface contribution is

modeled explicitly (Ahmad and Fraser, 1982) as an addi-

tion of a flat dark ocean (nearly black in NIR and SWIR

channels), plus some water leaving radiance (in VIS chan-

nels), plus whitecaps, foam and glitter (e.g., Cox and Munk,

1954; Koepke, 1984). Over land, although the land surface

reflectance varies greatly with season and location, Kauf-

man et al. (1997b) found that, over vegetation and dark soils,

the surface reflectance in a blue wavelength is approximately

equal to half that in a red wavelength, which is in turn half

that of a SWIR wavelength (e.g., near 2.1 µm). This land sur-

face parameterization is applied to the DT_L to constrain

systems of equations (one for each wavelength). For both

DT algorithms, the goodness of fit is judged by the closeness

between computed and measured TOA reflectance in the se-

lected channels.

The third algorithm (AC_L; Vermote et al., 1997, 2002)

listed in Table 1 derives aerosol information internally and

uses the aerosol information for deriving atmospherically

corrected surface products (the “MxD09” product). The

AC_L algorithm used for MxD09 shares a common devel-

oper heritage with the DT_L used for MxD04 (note over-

lap of authors between Kaufman et al., 1997a and Vermote

et al., 1997). However, instead of solving for the TOA re-

flectance ρ∗ as the DT algorithm, it inverts the equation and

solves for the surface reflectance, ρs. The comparison be-

tween the derived and expected spectral surface reflectance

determines the best solution. Since 1997, the AC_L and

DT_L algorithms and products have diverged because of dif-

ferent needs. DT_L tries to derive aerosol properties (Remer

et al., 2005; Levy et al., 2007a, b), regardless of surface con-

ditions, and AC_L tries to derive land properties regardless

of atmosphere conditions (Vermote and Kotchenova, 2008).

DT_L must retrieve aerosol at all aerosol loadings, includ-

ing very heavy aerosol events, while AC_L can choose to ig-

nore these heavy events to ensure accurate surface retrievals.

Theoretically, the resulting AOD and aerosol model could be

similar to that of a DT algorithm, but in practice, this may

not be the case.

2.2 A short history

The MODIS DT algorithm has been updated since formula-

tion in the 1990s and implementation on Terra and Aqua. In

MODIS terminology, a stable combination of algorithm ver-

sion and product version is known as a Collection, which we

refer to by CX where X is a number. C2 began at launch, C3

began soon after, and C4 denoted the first attempt to com-

bine forward processing and reprocessing of old data. By

late 2005 the DT_L and DT_O aerosol retrieval algorithms

became stable. The C5 aerosol data set (MxD04) was pro-

cessed with identical DT aerosol retrieval algorithms on both

Terra and Aqua, theoretically leading to a consistent MODIS

aerosol data record. However, as explained in the introduc-

tion, using a common algorithm for the entire data mission

did not ensure a CDR-quality data set. Differences in cali-

bration crept in, leading to artificial trending of AOD. Start-

ing in 2014, the entire MODIS mission is being processed

again with updated algorithms. Corrections to calibration

have been applied, and the products are known as Collec-

tion 6 (C6; Levy et al., 2013). The MODIS C6 (M_C6) data

cover the entirety of the MODIS mission, including temporal

overlap with VIIRS.

Development for the VIIRS algorithms over land and

ocean (V_L and V_O) began in the early 2000s, concurrent

with earlier versions of the MODIS algorithms. At this point

the personnel overlap between algorithm teams disappeared,

causing the algorithms to diverge. The V_L algorithm is

a variant of the AC_L algorithm, which employs extra blue

wavelengths that help constrain aerosol type (Vermote and

Kotchenova, 2008). The V_O algorithm is directly adapted

from DT_O, but with adjustments and modifications. For ex-

ample, the spectral inversion for V_O does not use a green
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Table 2. MODIS and VIIRS instrument specifications.

Aqua-MODIS Suomi NPP-VIIRS

Orbit altitude 705 km 824 km

Equator crossing time 13:30 LT 13:30 LT

Swath width 2330 km 3040 km

Sensor zenith angle range ±64◦ ±70◦

Wavelength bands 36 bands (20 in solar spectrum) 22 bands (15 in solar spectrum)

Pixel size, nadir 1.0/0.50/0.25 km 0.75/0.375 km

Pixel growth factor, edge of scan 4.8× 2.0 1.6× 1.6

Bow-tie effects Yes Decreased

Figure 1. “True-color” RGB images for MODIS (a) and VIIRS (b), created from all orbits during 29 May 2013. Note the increased VIIRS

swath width, and full daily global coverage.

(0.55 µm) channel like DT_O, but uses 0.75 µm channel in-

stead. Unlike the MODIS-DT algorithm, where ocean prop-

erties are included in the LUT, the VIIRS algorithm analyt-

ically computes the ocean surface properties, and then cou-

ples with an atmosphere-only LUT. For both land and ocean,

the VIIRS algorithms use different radiative transfer codes

for LUTs, as well as different formulas for determining good-

ness of fit between LUTs and observations (Hsu et al., 2013a;

Jackson et al., 2013).

As described by Jackson et al. (2013), the current IDPS

algorithms have undergone numerous changes since the “at-

launch” algorithm. For example, the assumed blue/red to

SWIR surface relationship for V_L was updated once suf-

ficient statistics were accumulated to provide a better empiri-

cal relationship than the pre-launch proxy data allowed (e.g.,

Liu et al., 2014). The latest versions have been applied to VI-

IRS since February 2013. The IDPS algorithm continues to

evolve quickly, and will likely undergo a series of updates

during its first 5 years of post-launch operation. The version

analyzed in this work is referred to as “validated stage 2” in

the IDPS nomenclature. We denote the time series of oper-

ational VIIRS-IDPS data as the VIIRS Environmental Data

Record (V_EDR).

2.3 Sensor differences

Table 2 shows that although the MODIS (on Aqua) and

VIIRS sensors are mostly similar, there are also some key

differences. VIIRS on S-NPP orbits at 824 km, compared

to MODIS aboard Aqua orbiting from 705 km, and has

a larger sensor view zenith angle (±70◦ compared to ±64◦

for MODIS), which both allow VIIRS to have a significantly

larger ground swath than MODIS (3040 km compared to

2330 km for MODIS). Although VIIRS and MODIS-Aqua

both have similar local equator crossing times (1.30 p.m.),

they overlap exactly (viewing a target from nadir and at the

same time) only every 3 days and only over polar sites (Up-

rety et al., 2013). Over a given mid-latitude or tropical site,

MODIS and VIIRS observe with varying offsets, ranging

from a few minutes apart (with similar solar/viewing geome-

try) on some days, to multiple hours apart (with different ge-

ometry) on others. In Fig. 1 we plot 1 day’s (29 May 2013)

orbits worth of both MODIS and VIIRS imagery, showing

coverage differences between the two orbits.

MODIS has 36 wavelength bands, of which 20 are in the

solar spectrum (λ < 3.8 µm). Depending on band, MODIS

pixels are either 0.25km×0.25 km (2 bands), 0.5km×0.5 km

(5 bands) or 1km×1 km (the remainder) at nadir. VIIRS has

22 bands of which 15 are in the solar spectrum. Three are

high-resolution “imagery” bands (I-bands) at 0.375 km and

the rest are at moderate (0.75 km) resolution at nadir (M-

www.atmos-meas-tech.net/8/4083/2015/ Atmos. Meas. Tech., 8, 4083–4110, 2015
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Table 3. MODIS and VIIRS spectral configuration and aerosol algorithm use of channels.

MODIS band How used within VIIRS band (µm) How used within

(µm) and native MODIS DT and native VIIRS-IDPS

resolution algorithm resolution aerosol algorithm

B8: 0.41 (1 km) M1: 0.41 (0.75 km) V_L

B9: 0.44 (1 km) M2: 0.44 (0.75 km) V_L

B3: 0.47 (0.5 km) DT_L

B10: 0.49 (1 km) M3: 0.49 (0.75 km) V_L

B11: 0.53 (1 km)

B12: 0.55 (1 km)

B4: 0.55 (0.5 km) DT_O M4: 0.55 (0.75 km)

I1: 0.64 (0.375 km)

B1: 0.65 (0.25 km) DT_L, DT_O

B13: 0.67 (1 km) M5: 0.67 (0.75 km) V_L, V_O

B14: 0.68 (1 km)

B15: 0.75 (1 km) M6: 0.75 (0.75 km) V_O

B2: 0.86 (0.25 km) DT_L, DT_O M7: 0.86 (0.75 km) V_L, V_O

B16: 0.87 (1 km) I2: 0.86 (0.375 km)

B17: 0.90 (1 km)

B18: 0.94 (1 km)

B19: 0.94 (1 km)

B5: 1.24 (0.5 km) DT_L, DT_O M8: 1.24 (0.75 km) V_O and Snow/Ice/

Snow/Ice/Sediment/ Sediment/Cirrus

Cirrus mask mask

B26: 1.38 (1 km) Cirrus mask M9: 1.38 (0.75 km) Cirrus mask

I3: 1.60 (0.375 km)

M10: 1.60 (0.75 km) V_O

B6: 1.63 (0.5 km) DT_O

B7: 2.11 (0.5 km) DT_L, DT_O

M11: 2.26 (0.75 km) V_L, V_O,

bright surface mask

bands). For MODIS, the higher-resolution bands are also ag-

gregated and reported at lower resolution, whereas for VIIRS

the M-bands and I-bands are observed independently. For

both MODIS and VIIRS, the higher spatial resolution bands

have a wider spectral width than the lower resolution bands,

which increases signal to noise, but also means that they may

extend into gas absorption regions. The spatial resolution of

pixels becomes coarser away from nadir towards the edges

of the scan. This results in issues of oversampling, as well

as bow-tie distortion (http://eoweb.dlr.de:8080/short_guide/

D-MODIS.html) near swath edge. For MODIS, the pixel size

grows four-fold so that a 0.5km× 0.5 km pixel at nadir be-

comes roughly 2.5 km× 1 km at swath edge. VIIRS is de-

signed to mitigate the pixel stretching and distortion in two

ways. Despite VIIRS’s wider swath, the M-band resolution at

swath edge has only doubled in size from 0.75 to 1.2 km. VI-

IRS data also have a pixel deletion algorithm, which reduces

over sampling.

As described in Sect. 2.1, the MODIS DT and VIIRS-

IDPS algorithms have been developed separately and opti-

mized for application on their respective sensors. Table 3

shows which VIS, NIR and SWIR band configurations for

MODIS and VIIRS, as well as which bands are used for

the MODIS-DT (DT_L and DT_O) and VIIRS-IDPS (V_L

and V_O) algorithms. If there is direct “overlap” within the

bands (e.g., band centers are within ±0.01 µm), they are in

the same row. For example, 0.86 µm is used on both sensors

for aerosol retrieval (M7 vs. B2). On the other hand, there

are bands used for MODIS DT with no direct counterpart for

VIIRS aerosol retrieval, and vice-versa. For example, while

there is a 0.55 µm band on VIIRS, it is not used for aerosol

retrieval. There is no VIIRS band that corresponds directly

to MODIS B1, B3 or B7, but nearby bands (e.g., ±0.03 µm)

are used. Band centers are calculated from online data for

relative spectral response (RSR).

We note that while a listed band may not be used within

the DT or VIIRS aerosol retrieval algorithms, it may be used

by an alternative aerosol retrieval (e.g., Hsu et al., 2013b)

or retrieval of other geophysical products (e.g., ocean color).

Additional bands (not listed, e.g., the IR bands) are used for

routine cloud masking or other tests.
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2.4 Practical differences

The MODIS DT and VIIRS-IDPS aerosol retrieval teams

have adopted different strategies for increasing the robust-

ness of their retrieved products. This includes steps to mask

pixels that are unsuitable for aerosol retrieval (e.g., clouds,

glint, etc.) as well as steps to assess confidence in the final

product.

To identify and mask clouds, the MODIS DT algorithm

combines internal spatial variability and reflectance thresh-

old tests with three thermal IR tests from the external Wis-

consin cloud mask (MxD35, e.g., Frey et al., 2008). The

VIIRS-IDPS algorithm relies on an upstream VIIRS Cloud

Mask (VCM; e.g., Vermote et al., 2014; Kopp et al., 2014)

for cloud masking. Both algorithms have their own methods

for screening out snow, ice, glint, and other pixels unsuitable

for retrieval.

Even after unambiguously unsuitable pixels are discarded,

pixel by pixel retrieval can create a noisy product (e.g., Tanré

et al., 1997). To increase signal and robustness in the product,

one could either aggregate the pixels (then do one aerosol re-

trieval), or do pixel retrievals but then average the results. The

strategy for the MODIS DT algorithm is the former, which

means it creates 20× 20 boxes of nominal 0.5 km data, and

derives an “average” spectral reflectance that represents the

nominal 10 km box. When creating this average, the masked

pixels are discarded, along with some fraction of the remain-

der, in order to ensure that the retrieval is based on appropri-

ate pixels. The retrieval is made once for a 10 km box. On

the other hand, the VIIRS-IDPS strategy is to retrieve on ev-

ery 0.75 km pixel that is not masked (e.g., clouds), known

as the intermediate product (IP). To create a final product (at

6 km resolution), the algorithm aggregates an 8× 8 box of

these 0.75 km pixels. Although the end result for both the

MODIS-DT and VIIRS-IDPS algorithms is a robust retrieval

of aerosol properties, the strategies for attaining it differ.

On MODIS, the DT algorithms’ primary products are to-

tal aerosol optical depth (AOD at 0.55 µm) over land and

ocean, plus information about particle size over ocean. This

size information is reported in a number of ways includ-

ing: fraction of AOD (at 0.55 µm) contributed by small par-

ticles known as fine mode fraction or FMF; the Ångström

exponents (AE) for two wavelength pairs (0.55/0.86 and

0.86/2.11 µm); the effective radius; and spectral AOD at

seven wavelengths. All other MODIS DT products are either

derived from these primary products or are diagnostics of the

retrieval. Note that prior to C6, MODIS also included AE

over land (0.47/0.65 µm) but was dropped from the product

list due to having little quantitative value (e.g., Levy et al.,

2013).

VIIRS produces the same basic information as MODIS:

AOD at 0.55 µm over land and ocean, plus a particle size

parameter over ocean. However, the VIIRS size parameter

over ocean is given only as an AE for the wavelength pair

0.86/1.61 µm and as spectral AOD in 11 wavelengths. There

is no effective radius product, and FMF is a diagnostic only

available at the IP level. VIIRS produces an AE over land

(0.49/0.67 µm), but preliminary validation suggests there is

no quantitative skill. We will not further discuss AE over

land.

Jackson et al. (2013) and Liu et al. (2014) discuss the con-

cepts of quality assurance (QA) as applied to the VIIRS-

IDPS algorithm, while Levy et al. (2013) discusses QA in

relation to the MODIS DT algorithm for C6. The criteria

and definitions differ, but the end result is an integer that

ranges from 0 to 3, roughly representing the range of “no

confidence” to “high confidence” in the retrieved product.

2.5 Product differences

Although the VIIRS retrieval algorithm was developed in-

dependently, the primary product of both the MODIS DT

and VIIRS-IDPS algorithms is the AOD at 0.55 µm. Liu

et al. (2014) have already performed comparison of MODIS

C5 and VIIRS-IDPS data, but since then, the MODIS algo-

rithm has been updated to C6. Therefore, we start with com-

parisons of MODIS C6 (M_C6) and VIIRS-IDPS data (the

V_EDR) products after 23 February 2013.

Figure 2 presents red–green–blue (RGB) imagery and

AOD retrieval for a near-overlapping scene over India and

the Bay of Bengal. Both MODIS and VIIRS images start at

07:35 UTC on 5 March 2013, but with ground-track sepa-

rated by about 350 km. 3.5 VIIRS 86 s granules were stitched

together to resemble one MODIS 5 min granule. The MODIS

AOD is plotted with 10 km resolution (at nadir), meeting

the quality assurance confidence (QAC) requirements for

MODIS (QAC≥ 1 over-ocean and QAC= 3 over land). The

VIIRS AOD is plotted for 6 km pixels with the VIIRS team’s

QAC recommendations (QAC= 3 for both ocean and land).

Although the surface issues and cloud patterns appear the

same for the common sampling, the retrieved AOD values are

different, especially over land. Over Bangladesh, MODIS re-

trieves much higher AOD (∼ 0.7) than VIIRS (∼ 0.4). Over

much of India, MODIS retrieves near zero values, with VI-

IRS not retrieving at all. Clearly, there are differences in

where each sensor chose to retrieve, whether due to suspi-

cion of clouds or surface issue. On the other hand, where not

impacted by glint, the coverages and magnitudes over ocean

are very similar, including both showing the tiny plume off

to the west of the Malay Peninsula.

Seasonally averaged AOD maps for March–April–May

(MAM) 2013 are shown in Fig. 3, following the aggrega-

tion strategy described in Levy et al. (2013) for calculating

monthly mean. For sufficient QAC, at least five pixels are re-

quired to create a daily mean for a given 1◦× 1◦ grid, and

at least 3 days are required to create a seasonal mean. While

3 days may not be sufficiently representative of a seasonal

mean, we assume it is for comparison purposes. Figure 4

presents scatterplots for (V_EDR vs. M_C6) of the seasonal
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Figure 2. Overlap of MODIS and VIIRS centered on the Bay of Bengal, during a 5-minute period starting at 5 March 2013 at 07:35. (a and

b) are true-color RGB images for MODIS and VIIRS. (c and d) are retrieved QA-filtered AOD at 0.55 µm for the MODIS C6 (10 km) and

VIIRS EDR (6 km) products. AOD are plotted based on published quality assurance recommendations for each product.

means in collocated grids, where each point denotes a sea-

sonal mean calculated from both data sets.

Like the comparisons that Liu et al. (2014) show of

MODIS C5 and VIIRS AOD, we see that the overall global

patterns of AOD are similar between the two data sets. AOD

is significantly smaller in the Southern Hemisphere (both

land and ocean) for both products. There are hotspots for

both data sets in southeast Asia, central America and central

Africa. One change from the C5-based analysis is a larger

coverage for MODIS in the southern oceans, due to allow-

ing for aerosol retrieval under larger solar zenith angles.

Otherwise, except for the complex cloud/aerosol belts east

of Asia, MODIS and VIIRS seem to have converged over

ocean, even compared to Liu et al. (2014). Primarily, this is

because M_C6 has introduced wind speed dependence into

the DT_O retrieval, which had already been included in the

VIIRS-IDPS retrieval. In fact, the scatterplot (Fig. 4a) shows

near one-to-one agreement for grid cells where both M_C6

and V_EDR provide data, with coefficent of determination

R2
= 0.89. Assuming the global seasonal mean to be the

simple average of retrieved grid values (no accounting for

surface area), for MAM 2013, both data sets indicate mean

AOD over ocean of ∼ 0.13.

Yet, over land, the differences remain large. Even with

the upgrades to surface reflectance relationship for MODIS

C6 (e.g., Levy et al., 2013), the AOD for V_EDR remains

much higher than MODIS (Fig. 4b). The exceptions are near

desert fringes and areas where surfaces tend to be brighter

(Fig. 3c). Most of the difference patterns are consistent with

those described by Liu et al. (2014). For collocated grid cells

with over-land AOD during MAM (Fig. 4b), R2
= 0.58, and

the V_EDR product is biased high by 0.06 as compared to

M_C6. We note that the high bias of VIIRS at high north-

ern latitudes is associated with snow melt during the spring,

and that there is a planned update to the operational VIIRS

algorithm to be implemented by 2016.
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Figure 3. Spring (March–April–May) 2013 maps (1◦×1◦) of QA-filtered mean AOD at 0.55 µm, derived from the MODIS C6 (a) and VIIRS

EDR (b) products. (c) plots the difference between (b) and (a). (d) represents the “increased” coverage of VIIRS-EDR using AOD units,

with reduced coverage plotted as black. Note that the seasonal AOD in a gridbox is the average of three monthly AODs, which in turn are

derived as the average of daily AOD within each month. Published QA-filtering for each product is followed.
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Figure 4. Comparison of mean AOD in collocated grids from the Spring 2013 maps (e.g., Fig. 2), for ocean retrievals (a) and land re-

trievals (b). Statistics (regression equation, number of collocated grids, correlation, bias and RMSE) are provided as text in each panel.
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3 The MODIS-like algorithm

Although both M_C6 and V_EDR products are meeting their

prescribed goals for accuracy, the differences between them

are too large to enable seamless creation of a CDR. However,

based on the experience of the ocean color community (e.g.,

Franz et al., 2005, 2012), consistent algorithms may help.

First, however, we have to create consistent input data.

3.1 The Intermediate File Format

A standard MODIS “granule” represents the swath col-

lected over 5 min (288 per day). About 138 are daylight

scenes suitable for aerosol retrieval. The combination of geo-

location (angles, whether land/sea, etc.) and calibrated ra-

diance/reflectance data are known as Level 1B (L1B) data

and are stored in Hierarchal Data Format version 4 (HDF4).

Calibrated data are separated into three files; one containing

the 0.25 km bands (bands 1 and 2; B1 and B2), the second

containing the 0.5 km bands (B3–B7, plus aggregated B1–

B2), and the third containing the 1 km bands (B8–B36, plus

aggregated B1–B7). Standard VIIRS data cover 86 s, are in

HDF5 format, and each band is contained as a separate file.

This leads to thousands of files per day, which, although an

advantage for parallel computer processing, means that the

VIIRS data are not easily used for MODIS-like processing.

To overcome some of these formatting differences, the

NASA Atmosphere Science Investigator-led Processing Sys-

tem at the University of Wisconsin (A-SIPS; http://sips.ssec.

wisc.edu/) created the Intermediate File Format (IFF) L1B

files for both MODIS and VIIRS. For VIIRS, this meant join-

ing native resolution (86 s) granules into 5-minute MODIS-

like granules, combining all M-bands and geolocation into

a single file, filling in “bowtie-deleted” pixels, and finally

archiving them in HDF4 format. The A-SIPS also created

MODIS-based IFF files that included only 1 km resolution

data (native 1 km plus aggregated B1–7 data) and similar ge-

olocation information. The IFF data are essentially a “lowest

common denominator”, reporting only data at coarsest reso-

lution (1 km for MODIS, and 0.75 km for VIIRS).

With IFF produced for both VIIRS and MODIS (e.g.,

V_IFF and M_IFF), a generic algorithm could theoretically

be applied to either one. However, since the IFF only includes

coarse resolution reflectance and geolocation data, not all in-

puts for the standard C6 algorithm are available. For exam-

ple, the Wisconsin cloud mask (Frey et al., 2008) is not in-

cluded for MODIS-IFF because the analogue for VIIRS is

still under development. Thus, the lack of high-resolution re-

flectance data and upstream infrared-based cloud informa-

tion will impact our various mask tests (clouds, ice/snow,

underwater sediments and inland water) when we compare

to standard M_C6 data. We envisioned, however, that this

would provide a more level playing field when comparing

the M_IFF and V_IFF outputs.
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Figure 5. Bandwidths for MODIS (red) and VIIRS (blue) channel

bands to be used for a the MODIS-like DT aerosol retrieval, over-

plotted with vegetation and seawater spectra. The two vegetation

(“deciduous”, “conifer”) spectra are from JPL’s ASTER spectral

library (http://speclib.jpl.nasa.gov/), while the “seawater” is from

USGS.

3.2 Wavelength bands, LUTs and gas corrections

We use the MODIS C6 LUTs and gas absorption formu-

las for the MODIS-like retrieval on the MODIS IFF inputs.

However, because they are based on MODIS channels, we

cannot simply apply these to the VIIRS IFF inputs, because

not every MODIS-DT band has an exact VIIRS M-band

equivalent (e.g., Table 3). Therefore, we use the nearest pos-

sible counterparts (M-bands within ±0.03 µm), and model

those for Rayleigh optical depth, gas absorption, and surface

reflectance characteristics. Figure 5 displays the location and

relative widths of the VIIRS bands compared to the MODIS

bands.

Using the same strategies as described by Levy

et al. (2013), the central wavelength (CW) and sea level

Rayleigh optical depth (ROD) for all DT bands (MODIS vs.

VIIRS) are listed in Table 4. Currently, only “in-band” re-

sponse (relative spectral response, RSR > 1 %) is used for

calculating these values. The RSR for MODIS is from the

MODIS Characterization and Support Team (MCST; http:

//mcst.gsfc.nasa.gov/), whereas the RSR for VIIRS comes

from the “NG Band-Averaged RSRs” set from NOAA’s Cen-

ter for Satellite Applications and Research (STAR; http:

//www.star.nesdis.noaa.gov/jpss/VIIRS.php). Including out-

of-band (OOB) response introduces less than 1 nm uncer-

tainty to the CW for either MODIS or VIIRS, except for the

VIIRS M3, where it leads to 2 nm uncertainty.

We created aerosol LUTs for VIIRS using the same

methodology and tools used for MODIS DT algorithm (e.g.,

Levy et al., 2007a, b; Remer et al., 2008). A combination

of MIEV (Wiscombe, 1991) and RT3 (Evans and Stephens,

1991) was used for DT_L, and the Ahmad and Fraser (1982)

code was used for DT_O. All improvements made for C6

(Levy et al., 2013) were also applied for creating LUTs for

VIIRS, including allowing for solar zenith angles up to 84◦.

While ROD dependence is modeled explicitly, aerosol model

properties (refractive indices, size distributions) are assumed
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Table 4. Characteristics of MODIS and VIIRS bands used for DT retrieval, including central wavelength (CW) and Rayleigh Optical Depth

(ROD).

MODIS Band # MODIS CW (µm) MODIS ROD VIIRS Band # VIIRS CW (µm) VIIRS ROD

B3 0.466 0.1918 M3 0.488 0.1602

B4 0.554 0.0945 M4 0.551 0.0976

B1 0.646 0.0508 M5 0.670 0.0440

B2 0.856 0.0162 M7 0.861 0.0160

B5 1.242 0.0036 M8 1.239 0.0037

B6 1.629 0.0012 M10 1.601 0.0013

B7 2.113 0.0004 M11 2.257 0.0003

unchanged for the small wavelength changes. For example,

the properties assumed for 0.49 µm M3 on VIIRS are copied

from 0.47 µm B3 on MODIS.

Methods for deriving equations used for correcting gas ab-

sorption (e.g., H2O, O3, CO2, etc.) are described by Levy

et al. (2013). The Line-By-Line RT model (Clough et al.,

1992, 2005) is used for deriving equation coefficients. The

spectral shifts from MODIS to VIIRS do matter. For exam-

ple, due to the Chappius band, the VIIRS M3 band has nearly

double the ozone absorption as the MODIS B3. For a stan-

dard atmosphere profile, ozone optical depths are 0.007 vs.

0.003. While the difference in simulated TOA reflectance

may be only on the order of 0.001 (for typical reflectance

of 0.2), due to the sensitivity of reflectance to aerosol phase

function and scattering, this may lead to error of 0.01 in re-

trieved AOD. Even more significant are the differences be-

tween B6 vs. M10, and B7 vs. M11, where carbon dioxide

and/or water vapor are significant absorbers. With non-linear

response to all bands in the inversion, not correctly account-

ing for gas absorption can lead to ∼ 0.02 or more bias in

aerosol retrieval.

3.3 Cloud masking, pixel selection and aggregation

The strategies for masking, selecting and aggregating pix-

els for the DT algorithm for MODIS C6 are described al-

ready (e.g., Levy et al., 2013, 2009; Martins et al., 2002).

However, since there is not yet an analogue of the “Wis-

consin” cloud mask (e.g., MxD35; Frey et al., 2008) for VI-

IRS, we only apply the internal “aerosol” cloud masks (e.g.,

3× 3 pixel spatial variability and visible/1.24/1.38 µm tests)

to the VIIRS IFF data. This means that, due to lack of three

IR-based tests (e.g., Levy et al., 2013), there will be degra-

dation of cloud detection ability. To ensure fair comparison

of our ML_V and ML_M products, we also ignore MxD35

for the MODIS IFF retrieval. Although there are differences

in pixel resolution between MODIS C6 inputs (e.g., 0.5 km),

M_IFF (1 km) and V_IFF data (0.75 km), as well as slight

wavelength shifts, we have assumed the M_C6 cloud mask

detection thresholds and M_C6 thresholds for detecting un-

derwater sediments and ice/snow. We use the same ancillary

data, including analyses from the Global Data Assimilation

System (GDAS; Kanamitsu, 1989) for prescribing water va-

por, ozone and wind speed and the same global “water mask”

(Carroll et al., 2009).

The M_C6 aerosol products are at 10 km (at nadir) resolu-

tion, which are based on boxes of 20×20 pixels at 0.5 km res-

olution. Here, we chose to keep the product spatial resolution

similar, so that the ML_M aerosol product is 10 km, based

on 10× 10 boxes of pixels at 1 km resolution. The ML_V

aerosol product is 7.5 km, also based on 10×10 boxes of pix-

els. After cloud masking, the DT algorithm includes a resid-

ual filter intended to reduce contamination from cloud shad-

ows and bright clouds. For MODIS C6, after sorting by re-

flectance, only the interval 25–75 % are kept for the retrieval

over ocean, and 20–50 % are kept for use over land. This

means when working on 20× 20= 400 pixels for C6, that

there will be at most 200 pixels over ocean or 120 pixels over

land. If any pixels have already been masked due to clouds or

other target issues, then there will be fewer. Over ocean, the

MODIS DT algorithm requires 10 pixels to attempt aerosol

retrieval, and more than 20 to meet requirements for high re-

trieval confidence. Over land, these requirements are 12 and

50. As we have moved to operating on 10× 10= 100 pixels

for either IFF data set, the maximum available becomes 50

pixels over ocean or 30 over land. Therefore, the minimum

number of pixels for retrieval and for meeting QA require-

ments must be redefined. Simply dividing by four would lead

to non-integers, so we require 3 pixels (for retrieval) and 4

pixels (for confidence) over ocean, and 3 pixels (for retrieval)

and 12 pixels (for confidence) over land.

Since the 10× 10 thresholds are not integer divisors of

those required by 20× 20, and having fewer pixels in gen-

eral impact signal to noise, we expect differences between

MODIS C6 and the ML_M retrieval. This is in addition

to having no IR-based cloud masking, as well as expected

small impact from having coarser spatial resolution for 3×3

cloud masking, and coarser (1 km) resolution for snow/ice

and other tests.

3.4 Land surface reflectance assumptions

While we have assumed that neither aerosol reflectance prop-

erties nor visible-based cloud masking algorithms should
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change much with respect to small spectral shifts (MODIS

vs. VIIRS), we cannot assume the same is true for assump-

tions of land surface optical properties (e.g., Fig. 4). For

MODIS, Levy et al. (2007b) derived band-to-band relation-

ships for surface reflectance, each described by a combina-

tion of ratios (slopes) and corrections (offsets). Specifically,

the nominal slopes were set at 0.53 and 0.49, for B3/B7 and

B1/B3, respectively, but were functions of scattering angle

and NDVI_SWIR (shortwave Normalized Difference Vege-

tation Index – a measure of surface “greenness”). The values

were considered “global”, so they would be representative

of many vegetated surfaces, and would minimize systematic

bias in retrieved AOD. However, the standard deviation of

the band ratios was large.

Under typical reflectance spectra for green vegetation,

Fig. 5 shows that surface properties within VIIRS bands are

different from those in MODIS bands. For the blue band,

reflectance is larger in VIIRS M3 (0.49 µm) as compared

MODIS B3 (0.47 µm), and yet in the red band, reflectance

is smaller in VIIRS M5 (0.67 µm) as compared to MODIS

B1 (0.65 µm). Clearly, surface reflectance ratios assumed for

MODIS will not work for VIIRS. Although the V_EDR

uses VIIRS-specific ratios derived from VIIRS-measured ra-

diances (Jackson et al., 2013), Liu et al. (2014) showed

that the ratio’s characterization could benefit from additional

(MODIS-like) information of surface greenness and scatter-

ing angle. Since, a complete MODIS-like surface reflectance

relationship requires a comprehensive atmospheric correc-

tion (e.g., Levy et al., 2007a) that has not been performed

yet, we have assumed the ratios used for the V_EDR without

benefit of any angle or greenness dependency. Specifically,

we assume ratios of 0.56 for M5/M11 and 0.65 for M3/M5

(Jackson et al., 2013). Thus, for this version of IFF retrieval,

we may see biases over some regions.

4 Results

Here we compare the MODIS-like products on MODIS and

VIIRS, with each other and with the standard MODIS C6 and

VIIRS_EDR products.

4.1 AOD: granule and daily imagery

Figure 6 shows the granule (5 March 2013 at 07:35 UTC) re-

trievals from ML_M and ML_V, comparable with the M_C6

and V_EDR imagery presented in Fig. 2. The MODIS-like

QA requirement is QAC= 3 over land and QAC≥ 1 over

ocean. As intended, the ML_V is more similar to the ML_M

(and thus to M_C6) than the V_EDR was to M_C6. Over

land, where both retrieve, the AOD values are closer, includ-

ing the region over Bangladesh identified in Fig. 2 where

M_C6 and V_EDR AOD differed by ∼ 0.3. However, there

is still some discrepancy in coverage, especially over eastern

India, which is retrieved as near-zero AOD by ML_M, but

still not retrieved by ML_V. It appears that the issue is iden-

tification of “bright” scenes not suitable for retrieval. The

retrieval is set up to degrade results (to lower QAC values)

when the observed reflectance in SWIR channel (2.11 for

MODIS, 2.26 µm for VIIRS) is greater than 0.25. Due to the

differences in this wavelength band, the decision to use or

not to use a particular ground location may vary between re-

trievals.

Figure 7a and b plots the MODIS-like retrievals (ML_V

and ML_M) for 29 May 2013 (RGB in Fig. 1). This date was

chosen for significant overlap of MODIS and VIIRS orbits

along with aerosol hotspots that could be visually compared.

Data are gridded to 1◦× 1◦ boxes (similar to MODIS Level

3), and filtered by QAC values. Clearly, VIIRS has greater

coverage than MODIS, so Fig. 7c shows aggregation for

when limiting VIIRS retrieval to a MODIS-like swath width

(constraining to sensor zenith angle < 60◦).

4.2 AOD: Level 2 retrieval statistics

We applied the ML algorithm to both MODIS and VIIRS-

IFF, for the entire Spring (MAM) 2013 season. Table 5

presents some statistics for the resulting along-orbit (Level

2) data, separately over ocean and land. When we consider

the number of possible retrievals (daytime for a particular

surface), the “non-filtered retrieval fraction” indicates how

many are populated with valid AOD (dark, cloud-free, non-

glint, etc), while the “QA-filtered retrieval fraction” repre-

sents the subset having higher confidence. Let us denote the

QA-filtered retrieval fraction as the “retrieval fraction”, or

“retrievability”, which depends on pixel resolution (Remer

et al., 2012), masking algorithms (cloud, surface, ice/snow,

etc.), and QA assignment (e.g., Levy et al., 2013). A consis-

tent algorithm would be expected to make similar choices,

so that under the same observing conditions, there would be

similar retrieval fraction. We will discuss retrievability fur-

ther in Sect. 4.4.

The last two columns in Table 5 report two different cal-

culations of mean global AOD. The first of these is the sim-

ple average of all QA-filtered pixels, and can be thought of

representing the sampling of the instrument, convolved with

choices of the retrieval algorithm. This “pixel-weighted”

view of the world is by definition, clear-sky biased (Levy

et al., 2009). The latter is computed by first creating a Level

3-like product (e.g., Fig. 3) and then taking the simple aver-

age of all grid values (no weighting by surface area). Thus,

observed differences in L3 global means convolve differ-

ences in retrieved L2 AOD with the sensor sampling and

algorithm retrievability. Interestingly, differences between

MODIS and VIIRS may be more or less (and of different

sign) whether considering the Level 2 or Level 3 aggrega-

tions (Levy et al., 2009). We will discuss global mean AOD

further in Sect. 4.3.

Over-ocean, the global QA-filtered mean AOD from the

ML_M algorithm (= 0.11) is similar to M_C6. With the
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Figure 6. QA-filtered AOD at 0.55 µm over the Bay of Bengal on 5 March 2013 at 07:35, retrieved with MODIS-like algorithm on (a) MODIS

(at 10 km) and (b) VIIRS (at 7.5 km). This is the same observational overlap as pictured in Fig. 2.

Figure 7. AOD at 0.55 µm, retrieved using MODIS-like algorithm on MODIS (a) and VIIRS (b), created from all orbits during 29 May 2013

(see Fig. 1). (c) approximates the MODIS coverage by reducing the VIIRS swath to sensor view angles less than 60◦.

ML_V data set, it jumps by 0.02 or nearly 20 %, even for

the MODIS-width-like swath. The V_EDR value is 0.12.

Figure 8 compares relative histograms (normalized to the

total QA-filtered retrievals) of the QA-filtered AOD. Over

ocean (top), the overall histograms are similar, but the ML_V

and ML_V60 histograms are shifted slightly towards higher

AOD, suggesting that the difference in the ML_M and ML_V

AOD retrievals are due to a slight increase for every L2

pixel’s value rather than adding a few high values. The most

significant difference may be that the V_EDR does not pro-

vide data in the smallest bin (between −0.05 and 0.00),

whereas the MODIS algorithm allows for high quality re-

trievals of exactly zero (Levy et al., 2013).

Over land, all MODIS or MODIS-like products estimate

a global (Level 2) mean around 0.17, differing by less than

0.01. These are all less than the V_EDR mean of 0.20. The

histograms for land (Fig. 8b) retrievals show a very simi-

lar distribution for ML_M and ML_V, with large differences

compared to the V_EDR. The MODIS DT algorithms allow

retrievals of zero and small negative AOD (to −0.05) where

the V_EDR algorithm does not (see Fig. 8, bottom).

Whether over land or over ocean, reduced swath version

of ML_V (ML_V60) have generally the statistics as the full

swath versions. This means that the discrepancies between

ML_V and the MODIS retrievals are not due to the increased

VIIRS sampling.

4.3 AOD: seasonal maps and statistics

Figures 9 and 10 follow from Figs. 3 and 4, showing sea-

sonal (MAM, Spring 2013) maps and scatterplots of 1◦× 1◦

AOD, for ML_M and ML_V data sets. Global means (equal

weighting for each grid cell) are reported as the last column

in Table 5.

Based on simple averaging of the 1◦×1◦ grids, the global

mean for ML_M is within 0.01 of M_C6. Figure 9d plots

the difference between ML_M (Fig. 9a) and M_C6 (Fig. 3a)
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Table 5. Spring 2013 (March–April–May) statistics of QA-filtered AOD, retrieved over ocean (top) and land (bottom). QA-filtering for the

MODIS and MODIS-like products is QAC≥ 1 over ocean and QAC= 3 over land, whereas for the VIIRS EDR it is QAC= 3 only for both

surfaces.

Product Land or AOD Non-filtered QA-filtered Number of Mean AOD Mean AOD

Ocean resolution retrieval retrieval QA-filtered (pixel (equal

(km) fraction fraction retrievals weighted) 1◦× 1◦)

M_C6 Ocean 10 0.187 0.183 4.24×107 0.115 0.127

ML_M Ocean 10 0.146 0.145 3.34×107 0.113 0.122

ML_V Ocean 7.5 0.176 0.173 1.25×108 0.134 0.148

ML_V60 Ocean 7.5 0.171 0.169 1.07×108 0.132 0.144

V_EDR Ocean 6 0.352 0.123 1.41×108 0.122 0.130

M_C6 Land 10 0.140 0.069 6.63×106 0.175 0.146

ML_M Land 10 0.133 0.074 6.97×106 0.168 0.154

ML_V Land 7.5 0.132 0.074 1.97×107 0.169 0.160

ML_V60 Land 7.5 0.132 0.074 1.71×107 0.170 0.158

V_EDR Land 6 0.289 0.075 3.33×107 0.199 0.217

maps, showing that most grids also have differences (of less

than 0.01). However, it is interesting that global AOD is re-

duced over ocean (from 0.127 to 0.122), but is increased over

land (from 0.146 to 0.154). Even more interesting is that the

ML_M–M_C6 differences vary whether using gridded data,

as compared to using along orbit (L2) data. In fact, they are

of opposite sign depending on surface. Whereas the global

over-ocean AOD reduced under either averaging protocol,

the global over-land AOD is increased under gridded aver-

aging, but decreased under L2 averaging. Clearly, there is

a complex interplay between the concepts of aggregating and

averaging, between clear-sky bias (e.g., Levy et al., 2013)

and retrievability (e.g., Remer et al., 2012).

Figure 9d shows that whether over ocean or land, the

biggest per-grid differences are along the mid-latitude storm

belts, mostly driven by differences in cloud masking. These

arise from the combination of coarser pixel resolution (1 vs.

0.5 km) and lack of thermal infrared-based (e.g., MxD35)

cloud mask information, together causing systematic bias in

pixel selection and aggregation for retrieval (e.g., Martins

et al., 2002). Over ocean, although this makes little or no

difference for most grid cells (e.g., Fig. 10a), there are some

grid cells with much larger differences (tending toward re-

duced AOD). The result is that R2
= 0.884 is less than unity

and that gridded data tends to show larger differences be-

tween ML_V and M_C6 than does along-orbit (Level 2) re-

trievals. By substituting the full MxD35 cloud mask (from

M_C6) into the ML_M retrieval (not shown explicitly here),

we confirmed that the cloud mask is the major culprit.

Over land, while reduced-resolution cloud masking con-

tributes to the discrepancies between ML_M and M_C6, the

more pertinent issue is the resolution’s impact on surface fea-

ture masking. The coarser resolution impacts ice/snow mask-

ing, in that sub-pixel snow can elude a coarse (1 km) resolu-

tion snow mask. This will tend to lead to higher-retrieved

AOD. Similarly, sub-pixel inland water (and coastlines) can

elude a coarser-resolution inland water mask, leading to

lower-retrieved AOD. Although we do not describe every

grid and how it contributes to global mean, it is clear that

both resolution and upstream information do matter. Interest-

ingly, however, even with an overall high bias, the R-squared

for land grids is extremely high (R2
= 0.969; Fig. 10b).

We now move from the ML_M to the ML_V, for which

presumably, the differences in upstream information (no

Wisconsin cloud mask or thermal IR, and more similar res-

olutions) should be less important. Figure 9e plots the dif-

ference between the ML_V and ML_M maps, and Fig. 10c

and d compare ML_V with ML_M for collocated grids over

ocean and land.

Certainly, the bias pattern for ML_V compared to ML_M

is significantly different than for the V_EDR compared to

the M_C6 (even accounting for the small ML_M vs. M_C6

biases). Since Fig. 9f shows that there is essentially no dif-

ference between the reduced swath (Fig. 9c) and the entire

swath (Fig. 9b), we cannot blame the bias pattern of Fig. 9e

on VIIRS having a wider swath with more oblique viewing

angles. At least for this particular season, the differences in

sampling (e.g., Colarco et al., 2014) do not influence the grid-

ded or global means.

Thus, over ocean (Figs. 9e and 10c), the use of the ML

algorithm on VIIRS has introduced a bias as compared to

MODIS, which was not observed in the original compari-

son between the V_EDR and M_C6. The R-squared between

ML_V and ML_M for collocated grids is only slightly lower

(R2
= 0.86), but the bias is significantly greater (B = 0.025)

than was seen for the V_EDR. We do note, however, that part

of this reduction in correlation has come from the 13 % in-

crease in the number of collocations (from 32 476 to 36 742),

primarily found over the far southern and northern oceans.

These regions are difficult to retrieve (e.g., Shi et al., 2011),
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Figure 8. Spring 2013 (March–April–May) relative frequency his-

tograms of QA-filtered AOD, retrieved over ocean (top) and land

(bottom). Note the non-uniform bin width, and that negative values

are allowed in the MODIS C6 and MODIS-like data sets over land.

See Table 5 for the number of QA-filtered pixels in each data set.

and correlation improves if they are not included in the scat-

terplot. However, Fig. 9e shows that the bias is present over

all of the global oceans, and remains even if the far northern

and southern oceans are excluded.

On the other hand, the ML_V retrieval over land, (Figs. 9e

and 10d), unequivocally reduces regional biases by an or-

der of magnitude as compared to V_EDR, and the global

mean is much closer to either ML_M or M_C6. The R-

squared for ML_M and ML_V collocated grids is impressive

(R2
= 0.935) with negligible (0.006) bias.

From the combination of Figs. 9 and 10, it is clear that

ML_V provides a different view of the world than the

V_EDR. The ML_V world looks much more like MODIS’s

over land, but it has a 20 % high bias over ocean.

4.4 AOD: retrievability

As a function of geography, geometry and the state of the

atmosphere, can we quantify the chance that a particular al-

gorithm will derive a high-confidence value for AOD? In

terms of where and when seasonal mean AOD are derived,

we focus on the concept of retrievability, in order to evalu-

ate whether the algorithms have made similar choices under

similar conditions.

Table 5 shows general agreement for the non-filtered re-

trieval fraction between all versions of the MODIS-like al-

gorithm, ranging between 0.146 and 0.187 over ocean and

0.132 and 0.140 over land. In other words, approximately

15–19 % of all 10 km (or 7.5) km boxes are retrieved over

land, with 13 % over ocean. This value is much less than

the V_EDR, which reports an AOD value in 35.2 % of

all retrieval boxes over ocean and 28.9 % over land. How-

ever, when it comes to assigning confidence to the retrieval,

the resulting retrieval fraction converges somewhat. Over

ocean, nearly 99 % of the retrieved values meet QAC thresh-

olds under MODIS-like logic, but only a third meet the

stricter V_EDR requirements. Therefore, after QA-filtering,

the retrieval fraction for the V_EDR actually becomes lower

(0.123) than any MODIS or MODIS-like retrieval (≥ 0.145).

There is negligible difference between the full ML_V and

(the reduced swath of) the ML_V60. Over land, after QAC

filtering, all algorithms retrieve about 7 %.

For this section, let us use the ML_M as a baseline. Fig-

ure 11 shows that although over-ocean retrieval fraction aver-

ages near 15 % and over-land near 7 %, the retrieval fraction

differs greatly by region. As expected, sparse or no retrieval

is made over the deserts and snow surfaces. Yet, interest-

ingly, the largest retrieval fractions are adjacent to deserts,

including pre-monsoon India (Thar), southern Africa (Kala-

hari) and the Sahel (Sahara). These regions have low rainfall

and cloud cover during MAM 2013. Over ocean, while the

retrieval fraction is more balanced, there tends to be lower

retrieval fraction over cloudy areas (ITCZ and midlatitude

storm tracks).

Figure 12 plots global retrieval fraction from the three

other algorithms as compared to ML_M (Fig. 11). The top

row shows difference maps, while the middle and bottom

rows are scatterplots comparing the 1◦ grids, for ocean and

land, respectively. Left, middle and right columns show

M_C6, ML_V and V_EDR as compared to ML_M.

Among the MODIS-like products, Table 5 showed that

the largest global retrievability difference was between the

M_C6 (0.18) and ML_M (0.14) over ocean. Examining

Fig. 12a and d, this retrievability difference is nearly every-

where, in that all original M_C6 data had ∼ 0.04 greater re-

trieval fraction than ML_M. However, looking closer, we see

that there are two regimes contrary to the high bias. Close

to coastlines (e.g., the west coasts of North America and

Africa), there is not a large difference between the two data

sets. These are the grids that make up the arm that nearly
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Figure 9. Spring 2013 (March–April–May) maps (1◦× 1◦) of QA-filtered mean AOD, retrieved from the MODIS-like algorithm on

MODIS (a) and VIIRS (b) IFF data sets. (c) is the seasonal plot for VIIRS but subsetted to approximate MODIS coverage (view zenith

angle< 60◦). (d) is the difference between the ML on MODIS and the MODIS C6 product (Fig. 2a), whereas (e) is the difference between

the two MODIS-like data sets (b)–(a). Finally (f) shows negligible difference between seasonal means derived from the reduced swath and

entire VIIRS swath (c)–(b). See Fig. 2.

follow the one-to-one line on Fig. 12d. For the bulk of the

ocean, however, the M_C6 has significantly greater retriev-

ability (slope = 1.21). That is, the original M_C6 had 20 %

more retrievals than does the degraded ML_M, regardless of

retrieval fraction. With a lower resolution (1 km) spatial vari-

ability test, the ML_M is less able to identify discrete clouds

in a 10 km box, and is more likely to throw out the entire

retrieval (Martins et al., 2002; Remer et al., 2012). As AOD

tends to be larger near cloud edges, reduced retrieval fraction

(from increased cloud masking) reduces the chance of re-

trieving higher AOD near clouds. As a result, there are fewer

high AOD retrievals, so that nearly every grid cell has lower

AOD for the ML_M product than for the M_C6.

Over land, Table 5 indicated that the original M_C6 was

more likely to have retrieved an AOD value than the de-

graded ML_M (0.14 vs. 0.13) but was less likely to have re-

trieved a high-confidence value (0.069 vs. 0.074). Figure 12a

and g show that the sign of the retrieval fraction difference

is not the same over all grids. Most land grids are retrieved

with higher frequency in M_C6 than they are in ML_M.

This is in part to better cloud masking, but also that the

M_C6 is better at identifying inland and ephemeral water as

well as ice and snow. The better masking creates a larger

chance for aerosol retrieval upon the remaining pixels, but

also a larger chance to degrade confidence because it has

identified poorer retrieval conditions. At the same time, bet-

ter removal of snow/ice (a bright surface) will lead to a lower

retrieved AOD, whereas better removal of inland water (very

dark surface) may lead to a higher retrieved AOD.

Turning to the ML_V, we see that over ocean, the retrieval

fraction is greater than ML_M by 0.03, which means that

there are 16 % more QA-filtered AOD values. However, in-

stead of being over nearly all global grids, Fig. 12b indicates

a zonal pattern to the retrieval differences, with larger differ-

ences in the tropics as compared to the northern and south-

ern oceans. The zonal pattern is also well correlated with the

AOD differences (Fig. 9e). While the differences in spatial

resolution (750 m vs. 1 km) definitely will impact the cloud

mask, and therefore retrievability, the patterns tend to sug-

gest that something else may be responsible. Even so, the

relationship between ML_V and ML_M retrieval fraction

is still strong (R2
= 0.90). Over land, Fig. 12h shows that

global retrieval fraction is nearly identical between ML_M

and ML_V (0.074), and is nearly one-to-one over most grid

cells (R2
= 0.96). There is some regional variability, result-

ing in some scatter about the one-to-one line. There does not

appear to be a strong relationship between larger differences

in retrieval fraction and larger differences in retrieved AOD.

The ML_V and ML_M appear to be making similar choices

when it comes to retrieving aerosol over land.
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Figure 10. Comparison of mean AOD in collocated grids from the Spring 2013 maps (e.g., Fig. 7), for ocean retrievals (a and c) and land

retrievals (b and d). The top panels (a and b) are MODIS-like on MODIS compared to the MODIS C6, and the bottom panels (c and d) are

for ML_V vs. ML_M. Statistics (regression equation, number of collocated grids, correlation, bias and RMSE) are provided as text in each

panel.

Figure 11. 1◦×1◦ retrieval fraction provided by the ML_M product

during Spring 2013.

Clearly, the retrievability pattern for the V_EDR is least

like the ML_M, having the lowest R-squares (R2
= 0.740

over ocean and R2
= 0.508 over land). Over ocean, it is both

biased negative and has less than one slope. Over land, the

overall bias is small, but there is greater scatter. While not

apparent when comparing AOD, it is clear from retrievability

patterns that the V_EDR algorithm makes different choices

than the MODIS algorithm.

4.5 Ångström Exponent over ocean

For both the DT and the VIIRS-IDPS algorithms over ocean,

the retrieval of AOD at 0.55 µm is dependent on exactly

matching of the observed and simulated reflectances at

0.86 µm. We have already analyzed some of the statistics

of 0.55 µm AOD in the previous sections. Here, we look at

the spectral dependence of the 0.55 and 0.86 µm AOD, in

the form of the Ångström exponent (AE). AE is defined as

AE=−(ln(τ_λ1/τ_λ2)/ ln(λ1/λ2)), where τ is AOD and

λ1, λ2 are the two wavelengths. The AE is inversely related
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Figure 12. Comparing retrieval fraction between each product and the ML_M product (Fig. 11). The top row (a–c) are difference maps,

whereas the bottom two rows (d–f for ocean and g–i for land) are frequency scatterplots.

to the general size of the aerosol particles, so that smaller val-

ues (AE< 1.0) are associated with large-sized (e.g., dust or

sea salt) and larger values (AE> 1.0) are indicative of com-

bustion (pollution or smoke) particles.

Figure 13 presents Spring (MAM) 2013 statistics for the

AE over ocean, computed for each of the different data sets.

Maps of AE are calculated by creating separate maps of AOD

at 0.55 µm (e.g., Figs. 3 and 9) and 0.86 µm, so that AE can

be calculated at each grid box from the means of these two

wavelengths. There are no filters for minimum AOD. For the

original MODIS C6 data (Fig. 13a), the Saharan dust belt

and the sea salt of the southern oceans are clearly marked

by AE< 0.5. The Asian pollution and US East Coast pollu-

tion plumes have AE> 1.0. The ML_M map (Fig. 13b) is

nearly identical, with R2
= 0.935 and mean bias less than

0.01. Although the ML_V map is well correlated with the

ML_M (R2
= 0.82 for collocated grids in Fig. 13g), and

spatial features are similar, its regression is not one-to-one

(slope= 0.81, offset= 0.24; bias= 0.12). The AE map of

the V_EDR, however, does not resemble MODIS or MODIS-
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Figure 13. Spring 2013 (March–April–May) maps (1◦× 1◦) of QA-filtered AE (0.55/0.86 µm), derived from spectral AOD retrieved from

the MODIS Collection 6 (a), MODIS-like algorithm on MODIS (b) and VIIRS (c) IFF, as well as on the V_EDR (d). (e) is the difference

between the two ML data sets. (f–h) are scatterplots comparing gridded AE from the different data sets.

like data sets at all. The Southern Ocean and dust AE minima

are not seen in the V_EDR map, and the scatterplot (Fig. 13h)

shows weak relationship (R2
= 0.43), which is both high bi-

ased (0.34) and far from one-to-one. It is interesting that one

algorithm (the ML_V) is biased in AOD (0.55 µm) but rea-

sonable for AE, whereas another (the V_EDR) matches in

AOD (0.55 µm) but not at all for AE.

4.6 AOD and AE: comparison with AERONET

While this paper is not focused on the “validation” of

our MODIS-like retrievals, it is useful to compare all four

data sets to ground-based AERONET sunphotometer data.

Specifically, we have used Level 2 (Version 2) spectral AOD,

where quadratic interpolation (in log–log space; Eck et al.,

1999) is used to interpolate to satellite wavelengths (e.g.,

0.55 or 0.86 µm). We used the collocation strategy of Levy

et al. (2010), such that 5× 5 boxes (25 values) of satellite-

retrieved product are compared with AERONET observa-

tions within ±30 min (usually four or five values) of over-

pass. A valid collocation is mutually cloud-free, requiring at

least two observations for AERONET and five values for the

satellite. This means we have neglected any impact of differ-

ent product resolution (10 vs. 7.5 vs. 6.0 km).

We compare M_C6, ML_M, ML_V and V_EDR data

sets from an entire year of observations (March 2013–

February 2014). This year provides a complete annual cycle

for validated V_EDR as well as for M_C6. Statistics of the

collocations (AOD at 0.55 µm and AE) are reported as Ta-

ble 6, with AOD scatterplots as Fig. 14. Results are compared

with the M_C6 expected error (EE) envelopes as suggested

by Levy et al. (2013), specifically (+0.04+ 10 %; −0.02–

10 %) over ocean and ±(0.05+15 %) over land. For AE, we

use EE of ±0.4.

With 1418 collocations over ocean, the M_C6 demon-

strates strong relationship (R2
= 0.88), near one slope

(0.983), but with a small positive bias (0.02). More than

75 % of the points match within EE. The ML_M has 1 %

fewer valid collocations (1399) and the statistics are simi-

lar. For both MODIS-derived data sets, the mean AOD bias

(red dots) increases with AOD for small AOD (< 0.1), but

is nearly constant for higher AOD. Looking at the V_EDR,

it meets EE standards by having more than 69 % of collo-

cations within EE and correlation similar to ML_M. It is

slightly higher biased overall (+0.03) than M_C6, but shows

a different bias pattern. Instead of increasing with AOD, it is

nearly constant. Having a 50 % wider swath, the V_EDR has

∼ 50 % more collocations than does either MODIS data set.

The ML_V data set is high-biased (0.04) as compared to

AERONET. The R-squared (R2
= 0.92) is stronger than it

is with three data sets, but with slope of 1.17 it has only

65 % within EE. Like either M_C6 or ML_M, the ML_V has

a bias discontinuity near AOD= 0.1 (e.g., Fig. 14c). With

61 % more collocations (2297) than ML_M, this is better

than would be expected based on swath alone, reflecting the

overall greater retrieval fraction.
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Figure 14. Global satellite-AERONET comparison of AOD at 0.55 µm, for each of four satellite-derived data sets, for period March 2013–

February 2014. For each panel, data are sorted by AERONET AOD, so that each box-whisker represents the same number of data points.

The blue box and whiskers indicate the median 50 %, the middle 66 % and the middle 95 % of the collocations. The red dots represent the

mean for the set of collocations. The solid black lines indicate the expected error for MODIS as suggested by Levy et al. (2013), which

is ±(0.05+ 15 %) for land, and (0.04+ 10 % and −0.02–10 %) over ocean. Details of the statistics, including linear regression statistics

(satellite vs. AERONET) are listed as Table 6.

Looking at AE (0.55/0.86 µm) over ocean, even though

there are large differences between M_C6 and V_EDR

as shown in Fig. 13, when it comes to comparison with

AERONET, AE regressions are not as divergent. Since we

require that AOD> 0.20 (e.g., Levy et al., 2013), AE is only

collocated at 25 % of the AOD pixels. All algorithms pro-

vide similar R-squared (R2
∼ 0.7), but have difficulty cap-

turing the dynamic range of AERONET. All four sets have

positive y intercepts (ranging from 0.18 to 0.47) and less

than one slope (ranging from 0.64 to 0.77). Interestingly, the

best performance comes from the ML_V algorithm. While it

has a small negative overall bias, its slope is closest to unity,

its y intercept is closest to zero, and its correlation is high-

est. This means that the ML_V algorithm retrieves the most

accurate AE, despite retrieving the least accurate AOD over

ocean.

Over land, Table 6 indicates that all AOD retrievals gen-

erally fit within EE envelopes and have overall biases close

to zero. Three of the data sets (M_C6, ML_M and ML_V)

have slopes between 1.0 and 1.1, offsets having absolute

value less than 0.01, and correlations around R2
= 0.81. The

V_EDR performs less well, having slope (0.77), intercept

(0.029) and correlation (R2
= 0.68). Thus, the performance

of the ML_V over land is much more consistent with either

MODIS-derived data set, than is the V_EDR. It is interesting

that the V_EDR has nearly 80 % more AERONET matches

as compared to ML_M, whereas the ML_V only has 25 %

more. The 25 % increase is primarily due to the increase in

swath width, with the additional collocations a result of dif-

ferent algorithm (and retrievability) of the V_EDR.

5 Global time series

In the previous sections we compared the different data sets

using global statistics from the 3-month MAM 2013 pe-

riod and evaluation using a 1-year period. While interest-

ing for algorithm development, this does not begin to as-

sess the long-term data continuity aspect. It is possible that

the offsets, say for ML_V compared to ML_M, do not con-

tinue for other seasons or across multiple years. Using the

computing power of the A-SIPS, we performed the MODIS-

like retrieval on all overlapping MODIS and VIIRS obser-

vations from April 2012 through May 2014 (slightly more

than two complete years). Figure 15 presents the time series

of monthly global 0.55 µm AOD, as computed via equal grid

weighting from each of the four data sets. The top plots are

the AOD over land and ocean, and the bottom two are the

differences, as compared to the ML_M. Due to processing

error, there is missing V_EDR in late 2012. The green ar-
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Table 6. Validation of QA-filtered AOD and AE at 0.55 µm, compared to collocated ground-based AERONET observations, for the period

March 2013–February 2014. EE for AOD is (+0.04+ 10 %; −0.02–10 %) over ocean and ±(0.05+ 15 %) over land. EE for AE as ±0.4,

and requires that satellite-retrieved AOD> 0.20. Statistics are for linear regression of the N points.

Product Land or Ocean N % within EE % above EE % below EE Bias RMSE Slope y int R2

M_C6 Ocean 1418 75.95 18.96 5.36 0.024 0.073 0.983 0.020 0.884

ML_M Ocean 1399 77.27 17.01 5.72 0.021 0.070 0.986 0.018 0.896

ML_V Ocean 2297 65.74 32.30 1.96 0.044 0.082 1.170 0.015 0.915

V_EDR Ocean 2139 69.47 26.32 4.21 0.033 0.064 1.040 0.024 0.887

M_C6 Ocean AE 289 77.16 10.73 12.11 0.01 0.319 0.665 0.323 0.688

ML_M Ocean AE 290 80.34 9.31 10.34 0.014 0.309 0.693 0.306 0.714

ML_V Ocean AE 504 85.52 6.75 7.74 0.023 0.286 0.768 0.176 0.747

V_EDR Ocean AE 489 77.51 16.56 5.93 0.129 0.35 0.639 0.473 0.678

M_C6 Land 3801 68.17 17.26 14.60 0.004 0.105 1.007 −0.008 0.818

ML_M Land 4128 68.12 19.84 12.04 0.012 0.101 1.003 0.003 0.812

ML_V Land 4989 65.44 17.52 17.04 0.005 0.111 1.011 −0.007 0.816

V_EDR Land 7358 67.67 20.56 11.77 0.007 0.121 0.776 0.029 0.683

Figure 15. Time series of monthly mean, global AOD at 0.55 µm, over ocean (left panels) and land (right panels). The top panels refer to the

magnitude, the bottom plots are the differences as compared to the MODIS-like on MODIS. The “beta” and “validated” refers to the VIIRS

EDR product, highlighting the relative convergence of VIIRS EDR for global mean, after February 2013. Note different y scales.
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rows on Fig. 15a denote the relative periods of “beta” quality

and “validated stage 2” quality V_EDR data.

Over ocean, all time series show the same seasonal cycle

(Fig. 15a). Highest AOD is observed during the May/June

months, with lowest during the October/November months.

An average ∼ 0.008 offset between M_C6 and ML_M is ap-

parent for all months, with little variability over time. An av-

erage ∼ 0.012 offset between V_EDR and ML_M is appar-

ent, but it apparently increases over time. In fact, the offset

after February 2013 continues to increase, approaching 0.02

by 2014. The pattern of the ML_V compared to ML_M is

interesting. While the ∼ 0.025 offset does not change from

year to year, the offset is even larger (more than 0.035) during

the late spring maximums. This represents the combination

of extra retrieval fraction and enhanced AOD observed dur-

ing the late spring aerosol transports (from Asia and Africa).

Over land, there is also a seasonal cycle observed

(Fig. 15b) by both ML_M and M_C6, but there are two

humps (Northern Hemisphere early winter and late spring),

along with much more variability. There are minima in Oc-

tober of both years, with 2013 lower than 2012. Although

we saw nearly identical AOD for the MAM 2013 period (Ta-

ble 5), the offset between ML_M and M_C6 actually varies

with season, ranging from near zero to as large as 0.02 dur-

ing the late spring and through the summers. Interestingly,

the variability of ML_V compared to ML_M is less than

M_C6 compared to ML_M. Finally, while the V_EDR set-

tles down towards the ML_M after February 2013 (validated

stage 2), the monthly offsets remain large (∼ 0.03) and vari-

able (±0.02).

6 Discussion

In the previous sections, we first compared the V_EDR data

product with M_C6. Then, we created a simplified MODIS-

like algorithm that was run on the MODIS-IFF data (ML_M)

and VIIRS-IFF data (ML_V). Based on the figures and statis-

tics, we saw the following.

– The 0.55 µm AOD from V_EDR over ocean is similar

to M_C6. Global mean AOD is within ±0.01 of M_C6.

While V_EDR has significantly more coverage, over-

all retrieval fraction is smaller. For common 1◦× 1◦

grids, AOD relationship is strong (R2
= 0.89) and re-

gression is near one-to-one. Compared to AERONET,

the V_EDR and M_C6 both meet expected error re-

quirements. The V_EDR has fewer retrievals of small

AOD< 0.02.

– Over-ocean AE (0.55/0.86 µm) retrieved from V_EDR

is offset high and has weak relationship to M_C6 (R2
=

0.43).

– Over land, the V_EDR has positive offset and provides

different spatial coverage of AOD. The V_EDR does

not retrieve negative AOD. R2 < 0.58, slope is 0.68 and

offset is 0.10. AERONET collocation confirms that the

V_EDR is too high at low AOD and too low at high

AOD.

– Primarily due to cloud and surface masking, the ML_M

data set is not exactly M_C6. There is almost no dif-

ference in overall Level 2 statistics or difference when

comparing with AERONET; however, the retrieval frac-

tion is lower over ocean and greater over land, which

creates differences when gridded into Level 3. There is

negligible difference in gridded AE over ocean.

– Over ocean, the ML_V AOD is strongly related to

ML_M (R2
= 0.86) but is biased high by about 20 %

in both L2 and L3 statistics. Retrievability is corre-

lated spatially, but there is 15 % larger retrieval fraction

with the ML_V product. These biases are confirmed

with AERONET collocations. AE is also spatially cor-

related, and when comparing to AERONET, AE from

the ML_V is better than ML_M.

– Over land, the ML_V looks much like ML_M. Regres-

sions compared to AERONET are nearly identical, and

spatial correlation between ML_V and ML_M maps is

high (R2
= 0.92). Global retrievability and mean AOD

are nearly identical.

– The ML_V provides a more MODIS-like picture than

did the V_EDR, especially over land.

Assessing two or more global aerosol data sets is com-

plicated. Comparing each with AERONET (e.g., validation)

provides some information. Comparing Level 2 pixel his-

tograms and Level 3 gridded maps and global coverage pro-

vides more. To connect the Level 2 results with the Level 3

results, we compared global retrievability statistics. Whether

an algorithm “chooses” to retrieve or not to retrieve for spe-

cific cases impacts the aggregated result. Retrievability statis-

tics help to interpret apparently contradicting statistics, such

as over-land data AOD being biased low in some metric (e.g.,

Level 2 means and histograms), but not when compared to

others (e.g., global AERONET data and Level 3 means).

When a common algorithm is applied to different sensors,

differences in the aerosol products can be reduced but not

eliminated. Clearly, there are still issues related to differences

in the MODIS and VIIRS sensors that impact how a common

algorithm will perform. For the remainder of this section, we

hypothesize some of the causes for biases and retrievability

differences. In the end, to create the most seamless CDR,

some algorithmic changes may be required to accommodate

the differences between the sensors.

6.1 Pixel spatial resolution issues

The spatial resolution of the input reflectances for the four

algorithms varies, with M_C6 and V_EDR using a mix
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of higher resolution (0.25 and 0.5 km for M_C6, 0.375 km

for V_EDR) and lower resolution bands (1 km for M_C6,

0.75 km for V_EDR). The IFF input reflectance files used

for the ML_M and ML_V files have only the lowest resolu-

tion bands for each sensor. The changes in reflectance pixel

resolution primarily affect three main parts of the algorithm:

– cloud masking,

– surface feature masking,

– retrieval QA assignment.

The MODIS-like algorithm has a less precise cloud mask

than standard M_C6. Primarily this is due to spatial reso-

lution. For example, in the standard MODIS aerosol cloud

mask, operating on 0.5 km resolution pixels, the algorithm

will mask any pixel exceeding a reflectance threshold. It will

also mask the center pixel for a set of 3× 3 pixels that ex-

ceeds a spatial variability threshold. The surviving pixels will

likely have a lower mean reflectance than if the masked pixel

was included. If the combination of the masked pixel and

surrounding pixels are equivalent to a single lower resolution

(i.e., 1 km pixel), then the mean or variability may not exceed

thresholds. If the masking was performed at 1 km resolution

(e.g., the ML_M), a blurred scene may survive, and lead to

cloud contamination. On the other hand, the cloud pixel may

be bright enough to lead to high enough reflectance in the

entire 1 km area, leading to clear sky bias. Over ocean, the

lower-resolution ML_M algorithm is tending to throw away

a larger portion of a 10 km aerosol retrieval box than the stan-

dard M_C6, leading to lower retrievability, and a clear sky

bias to the retrieval. The resulting AOD is smaller.

Over land, the differences between ML_M and M_C6 are

more likely due to resolution of surface feature masks. Al-

though both use the same water fraction database (e.g., Car-

roll et al., 2009), additional small and ephemeral inland wa-

ter bodies (rivers, ponds, etc.) are identified by low values

of NDVI. Retrieval fraction will generally be increased with

this blurred surface, and the retrieved AOD will generally

be higher, especially for clean cases. This is because surface

reflectance ratios for murky inland water do not match as-

sumptions. Visible reflectance is proportionally much higher

than the very dark mid-infrared reflectance of water, and the

unexpected higher reflectance in the visible is mistakenly at-

tributed to aerosol in the retrieval. The same issues come up

for subpixel snow and for other feature masks.

Although both ML_M and M_C6 products are 10 km re-

trievals, we are reminded (e.g., Sect. 3.3) that in addition to

masking, the different pixel resolutions (1 vs. 0.5 km) lead to

different pixel aggregations. Whereas there are 400 possible

pixels in M_C6, there are only 100 for ML_M. Even if cloud

or surface masking was applied identically, the sorting pro-

tocols (e.g., 25–75 % over ocean or 20–50 % over land) will

result in different mean spectral reflectance to perform the

aerosol retrieval (i.e., the spectral inversion). Furthermore,

since the final pixel thresholds associated with higher con-

fidence are not integer fractions of those used for M_C6, it

may be more or less difficult to receive the required QAC

level. Over land, the fraction of valid data is lower for ML_M

than M_C6, but the final number receiving sufficiently high

QAC is larger.

In regards to differences between ML_V and ML_M, the

use of 750 m vs. 1 km pixels should affect cloud and surface

masking. There is qualitative similarity between the middle

and left-hand panels of Fig. 12, suggesting that the higher

resolution of ML_V is having a similar effect as using a bet-

ter resolution MODIS product.

6.2 Wavelength issues

Unlike ML_M and M_C6 that both use MODIS-Aqua ob-

servations as input, differences in AOD and retrievability be-

tween ML_V and ML_M may partially be caused by wave-

length shifts. While we have designed the ML_V algorithm

to account for wavelength-specific clear-sky atmospheric ef-

fects (aerosol, Rayleigh and gas contributions), we have less

control over surface boundary and masking conditions.

Figure 5 showed that for a typical vegetated surface, the

surface reflectance is larger at 0.49 µm (used by VIIRS) than

at 0.47 µm (used by MODIS), and smaller at 0.67 µm (used

by VIIRS) than at 0.65 µm (used by MODIS). In the global

mean, and for most regions, adopting the VIIRS-IDPS sur-

face relationships (Liu et al., 2014) appears to work well.

However, a full atmospheric correction exercise (e.g., Levy

et al., 2007a) could determine surface reflectance relation-

ships for VIIRS that are more analogous to MODIS.

In addition, shifted wavelengths will impact thresholds re-

quired for cloud and surface masking. For example, over

land, the MODIS algorithm masks clouds based on re-

flectance and spatial variability of reflectance in the blue

channel. If the surface reflectance is already larger at 0.49 µm

(VIIRS) than at 0.47 µm (MODIS), it may be more likely to

exceed a MODIS-based cloud mask threshold. Similar argu-

ments hold for other channels used for other masks, but sys-

tematic study is beyond our scope here.

6.3 Calibration

Finally, there is the issue of calibration. The MODIS in-

struments were calibrated to laboratory standards more than

15 years ago. The degradation of MODIS VIS/NIR/SWIR

bands on Terra has been generally more severe (e.g., Lya-

pustin et al., 2014 and references therein), but MODIS

on Aqua has also experienced degradation and calibration

anomalies. Since the original radiometric calibrations were

required to be within ±2 % (for typical values), and sub-

sequent updates were made relative to the original, the un-

certainties remain or can become larger over time. Even for

MODIS Collection 6 (e.g., Levy et al., 2013), we will likely

see that global AOD derived from Terra has a systematic
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+0.015 offset as compared to Aqua. Using the results re-

ported by Lyapustin et al. (2014) in cross-calibrating Terra

to Aqua observations, we performed an offline test and con-

firmed that Terra/Aqua differences could be reduced. Al-

though it is not yet proven that Terra is more “biased” than

Aqua, we tend to assume that aerosol climatology should

normalize towards Aqua.

VIIRS on S-NPP was lab-calibrated as recently as 2011.

Like MODIS, VIIRS radiometric calibration is also expected

to have uncertainty on the order of ±2 % (e.g., Cao et al.,

2014). Thus, it is not unreasonable to believe that the two in-

struments could be different by more than ±2 %, and might

vary by wavelength band. Theoretically, where both sensors

observe the same scene, with the same geometry, and at the

same time (known as a simultaneous nadir overpass or SNO),

then one can compare them directly. However, even though

both MODIS and VIIRS have ascending orbits that cross the

equator at 13:30 local solar time, their only true overlap is

for a few minutes every few days, and only poleward of 70◦

(north or south). SNOs over ice or snow or clouds do not pro-

vide sufficient insight into darker surfaces, so we also need to

look at “near” SNOs, which, depending on tolerances (time,

spatial and angular differences) can occur in low-latitudes.

Since near-SNOs do not have the exact same time or geome-

try, issues including moving clouds and surface bi-directional

radiance function (BRDF) will have to be accounted for.

In addition, with the problem of wavelength shift, observed

TOA reflectance will not be identical (spectral dependence

of Rayleigh optical depth, surface reflectance, gas absorp-

tions, etc.) even under the exact same geometry. Therefore,

calibration biases have to be separated from apparent biases,

using sophisticated radiative transfer convolved with spectral

libraries.

In this direction, Uprety et al. (2013) and others have com-

pared MODIS-Aqua and VIIRS over near-SNOs located in

the tropics and mid-latitudes. Although not all DT bands

have been compared consistently, the general conclusion was

that at least some of the VIIRS bands appear to be biased

high as compared to MODIS. The Uprety et al. (2013) study

indicated that the VIIRS M4 (0.55 µm), M5 (0.67 µm), M7

(0.86 µm) and M8 (1.24 µm) bands had residual high biases

of 1.6, 1.3, 2.2 and 3.5 %, respectively, (with error bars of

1–2 %). Based on personal communication, S. Uprety (2014)

suggested that the M11 band (2.26 µm) also appears to have

a high bias, but more study was required.

With such large uncertainties to VIIRS vs. MODIS cali-

bration biases, we are not yet at a stage where a particular

set of coefficients can be applied to make VIIRS agree with

MODIS. Additionally, there are additional issues, similar to

those described by Lyapustin et al. (2014) for MODIS, that

include view angle dependence, polarization, and other cor-

rections. Nonetheless, when we apply the inverse of Uprety

et al.’s (2013) mean factors to archived VIIRS-IFF data, we

see the global over-ocean mean AOD decrease by 0.01 (half

of the∼ 0.02 bias). Over land, although no change for global

AOD, we saw regional changes. Note, however, that since

we did not also scale M3 (0.49 µm), M10 (1.60 µm) or M11

(2.26 µm) channels (no published factors), it is likely that re-

sulting AOD and AE retrievals will be inconsistent. Regard-

less, the upshot is that calibration matters, and applying cor-

rection factors of±2 % to selected channels can make VIIRS

converge towards MODIS. For climate continuity, the recali-

bration must be carefully applied (e.g., Turpie et al., 2012).

7 Summary/conclusion

Since early 2000, NASA’s MODIS sensors have been apply-

ing the “dark-target” (DT) aerosol algorithms to characterize

AOD at 0.55 µm over land and ocean, and AE over ocean.

With the near completion of a re-processed data set known as

M_C6, MODIS products continue to be integral to both rou-

tine and research applications. As we move toward the JPSS

era, VIIRS on Suomi-NPP is intended to provide a bridge for

continuing an aerosol data record, and ensuring continuity

for climate applications. As of early 2015, VIIRS has been

flying concurrently with MODIS for over 3 years.

Although MODIS and VIIRS have similar capabilities,

and the aerosol retrieval algorithms have similar heritage,

there are many differences between the operational VIIRS-

EDR and MODIS-C6 aerosol products. The instruments have

different orbits, different ground sampling, spatial resolution

and wavelength bands. The aerosol algorithms use different

masking (clouds and surfaces) techniques, along with differ-

ent strategies for pixel aggregation and retrieval. The aerosol

products have different formats and cater toward different

research communities. While the V_EDR aerosol products

have similar global uncertainties as compared to M_C6, the

differences can be large, especially over land.

In this work, we have applied a MODIS-like DT algo-

rithm on VIIRS. We used the MODIS RT assumptions to

create aerosol lookup tables that account for shifted wave-

length bands. We applied MODIS-like surface and cloud

masking and MODIS-like pixel aggregation. To test our algo-

rithm, we relied on the IFF data produced by the Atmosphere

SIPS at University of Wisconsin. Since IFF was produced

for both MODIS and VIIRS, we used the same MODIS-

like algorithm to produce ML_M and ML_V for the period

March 2012–May 2014. We focused on the 3-month period

covering March–May 2013. ML_V and ML_M were com-

pared with each other as well as with M_C6 and V_EDR.

At the same time as comparing ML_V with ML_M, we

characterized the differences between ML_M and M_C6.

Since the ML_M is based on degraded input pixel resolution

(1 km vs. 0.5 km) and no thermal IR data, there were some

small impacts to cloud masking (especially over ocean), and

surface masking (especially over land). In addition, the dif-

ference in input pixel resolution impacted the detection and

masking of ephemeral and inland waters. The result was that

while there was very little change to global AOD statistics
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(Level 2 histograms), there were changes to some 1◦× 1◦

grids, which affected a Level 3 global mean. The retrieval

fraction and concept of retrievability was investigated.

In general, the ML_V was much more similar to ML_M

than the V_EDR was to the M_C6. It did not matter whether

using the entire swath width or subsetting to a MODIS-

sized width (VZA< 60◦). Over land, global mean AOD and

global retrieval fractions were almost identical. Regionally,

there were both high and low biases, but when regressed as

a scatterplot, most grids fell near the one-to-one line (R2
=

0.935). Retrieval fractions were nearly identical globally, and

gridded values regressed nearly one-to-one on a scatterplot

(R2
= 0.963). Both ML_V and ML_M provided similar per-

formance when comparing retrieved AOD to AERONET ob-

servations. In fact, even with non-tuned surface reflectance

relationships, the ML_V and the ML_M appear to view

global dark land with the same eyes.

On the other hand, the ML_V is biased compared to

MODIS over ocean. ML_V global ocean 0.55 µm AOD is

greater by 0.02 or nearly 20 %, and global scatterplots and

maps show that the 20 % bias is everywhere. Some of that

bias may be due to differences in cloud masking under a dif-

ferent resolution pixel regime (0.75 vs. 0.5 km), but then the

zonal differences in retrieval fractions do not necessarily sup-

port this. Interestingly, while the global green wavelength

AOD is biased high by 20 %, the bias at longer wavelengths

is smaller. In fact the ML_V view of 0.55/0.86 AE is bi-

ased high compared to a MODIS view, indicating stronger

spectral dependence, and tends to have better correlation to

AERONET observations. A 1–2 % correction to VIIRS re-

flectance data may make VIIRS spectral dependence and re-

trieved 0.55 µm AOD look more like MODIS over the ocean,

but the uncertainties still need to be explored. Plus, without

applying consistent corrections to all wavelengths, one may

introduce new biases to the over-land retrieval, to other VI-

IRS products, or to “downstream” products that might use

the aerosol products (e.g., Loeb et al., 2006).

The MODIS-like algorithm on VIIRS data yields results

that are more consistent with MODIS (C6) data. However,

the overlap is not perfect. Most likely some of the differences

are due to calibration. However, we still seek a better charac-

terization of differences that will arise from pixel resolution

and its impacts on masking and surface identification. Our

intention is to not only stitch together products of total AOD

(at 0.55 µm), but also aerosol size and spectral dependence,

which may prove to be the more difficult task.

Climate science requires long continuous data set time se-

ries. Average aerosol optical depth (AOD) over the globe is

on the order of 0.15, and modeled global trends over the last

few decades are at most 0.01 per decade. Thus to discern

a global aerosol trend we will require continuity to better than

0.01. We have shown that this value is difficult to reach, even

using the same sensor and the same algorithm but at differ-

ent resolutions. Conversely, we have also shown that conti-

nuity of 0.01 should be possible as we cross from MODIS

to VIIRS, if the difficulties of sensor characterization in all

its forms are well-understood and addressed. At this point,

we have processed limited data from both MODIS and VI-

IRS. We have relied on the IFF data provided by the A-SIPS,

which excludes information (higher spatial resolution bands,

thermal IR bands, cloud mask) that should be included in

a future version of a MODIS-like algorithm for VIIRS. Omit-

ting this information hinders a MODIS-like algorithm from

duplicating the long-term MODIS algorithm results. Incom-

plete calibration verification for all VIIRS channels is an-

other road-block. There are still many steps to take before

we can achieve a true MODIS→VIIRS aerosol continuity,

using the full suite of spectral and spatial information pro-

vided by both sensors. Clearly, our work is not done.

Fortunately, MODIS and VIIRS are both currently flying,

and are both in nominal operational states. At this point, there

are more than 3 years of overlapping observations, which we

hope will be extended as long as possible. As we continue

to develop a more consistent algorithm between MODIS and

VIIRS, and to monitor calibration on each sensor, we will use

the overlapping time series as a test bed and to prepare for

a time when VIIRS is flying alone. By that time we expect

the two data sets to converge even closer and provide the

necessary continuity in aerosol properties.
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