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Summary. The similarity rules valid for reflection
against planetary cloud layers permit us to transform
the set of parameters a (albedo for single scattering),
g (asymmetry factor for single scattering) and b (optical
thickness) in such a manner that the numerical results
remain about the same. Three forms of such rules,
which coincide for nearly-conservative scattering, are
explained and a preference is expressed for one of them,
in which the parameter s=[(1 —a)/(1 —ag)]? is kept
invariant. The numerical test on the spherical albedo

A* of a homogeneous semi-infinite atmosphere with
Henyey-Greenstein scattering confirms that A* may
be expressed as a simple function of s alone, with
deviations reaching at most 0.002 for any set of
parameters (a,g). Such a close similarity cannot be
found for the plane albedo.
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1. Posing the Similarity Problem

Although many accurate methods to solve problems
of multiple light scattering in a planetary atmosphere
are known, the need for quick, approximate methods
remains. Among these the use of similarity relations
takes a special place, because this method does not
solve the problem from scratch but relates it to a
problem with different parameters already solved. This
is particularly useful if it permits with sufficient accuracy
the reduction of a problem with arbitrary anisotropic
phase function to one with isotropic scattering.

The purpose of this paper is twofold. We shall express
a preference among three nearly equivalent ways in
which the similarity relations for non-conservative
scattering may be formulated. And we shall support
this by a numerical test on the spherical albedo for a
homogeneous semi-infinite atmosphere, yielding for
this quantity a universal expression correct to 0.002
for any phase function.

Consider diffuse reflection from a homogeneous part
of a planet’s surface, or from the top surface of its cloud
cover. For simplicity we assume absence of polarization.
The diffuse reflection function R(u, o, @) is a function
of uy, the cosine of the angle of incidence, u, the cosine
of the angle of emergence, and ¢, the azimuth difference
between the plane of incidence and emergence. We
write the azimuth average, or zero-order coefficient in
the azimuthal Fourier expansion, as

2n
Ry, po)=2m)~* b[ R, o, ) do . )

This function is symmetric in x4 and u,. We choose the
normalization so that R=1 for a white Lambert
surface. This is now the customary choice, although
many authors in the tradition of Chandrasekhar (1950)
prefer to use S(u, uo)=4poR(1, ug). Two mtegral
expressions are often needed. They are:

plane albedo

1
r(u) = E‘;R(ﬂ, Bo) 210 dpg V)

spherical albedo
1

11
= (I) rw2pdp= (I) (I) R(u, o) 4o dp dpg - 3)

Here the explanation requires a side step. It is custo-
mary to introduce the spherical albedo as a property
of the entire planet, not of a plane surface or atmo-
sphere. It is defined as the fraction of the incident solar
radiation (in a chosen wave-length interval) diffusely
reflected by the planet and its atmosphere over all
directions. One possible way of computing it is first, at
a given angle sun-planet-earth, to integrate over the
illuminated and visible part of the disk in order to find
the phase function of the planet for that angle. And by
integrating over that angle we can then find the
spherical albedo A*. The equations may be found in
standard texts (Horak, 1950; Harris, 1961).

However, this is not the full story. The texts just cited
leave the distinct impression that the route to compute

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1974A%26A....35..209V

vl

FI973A88A - 27352 7709

210 H. C. van de Hulst

A* via the planetary phase function is the best or only
method. The route via the plane albedo, expressed by
Eq. (3) above, is generally simpler and fully equivalent.
This fact is clearly stated in the literature (Russell,
1916; Ambartsumyan, 1958; Sobolev, 1974) but it may
be useful to prove it once again as follows.

If we could divide up the sun’s disk in many pieces
and distribute them evenly around the entire sky, the
fraction of the incident radiation, returned by the planet,
would be the same. But each part of the planet’s
surface (or top surface of cloud cover) would then be
exposed to uniform radiation from all directions. The
fraction of energy returned by a plane surface in such
uniform illumination is just the expression (3) above.
If this is the fraction returned by each part of the
planet, and the surface or cloud cover is homogeneous,
then Eq. (3) also expresses the spherical albedo of the
entire planet.

All of the functions and quantities defined above
depend on the nature of the surface, or cloud cover.
We now specify a homogeneous atmosphere without
reflecting bottom surface. It is characterized by

b = total optical thickness,
a=albedo for single scattering,

@ (cos a)=the complete phase function for single
scattering.

The phase function may be expanded in the usual
manner in Legendre functions, starting with w,=1.
The specification is complete if all coefficients w,(n=1)
of this expansion are known. Most important, un-
doubtedly, is the coefficient w,, which permits us to
consider

1
g=<{cosa)= 3 0= asymmetry factor of the phase
function

as the third essential parameter of the problem.

The similarity problem now is posed as follows. If the
three parameters b, a, g are given, is it then possible
to find another set of parameters b’, a’, g, for which
the reflection properties of the atmosphere are about
the same? In particular, if we wish to use available
results for isotropic scattering (g’ =0), what is then the
most appropriate choice of b’ and a’?

2. Three Forms and Preferred Choice

The aim is to make the reflection functions (or moments
or bimoments) corresponding to two “similar” at-
mospheres about equal, not strictly equal. This permits
a certain latitude in the answer, so that more than
one set of similarity relations may be put forward.
Only reasons of convenience and numerical tests can
establish a certain preference.

In an unbounded homogeneous medium with non-
conservative scattering the equation of transfer permits
a solution of the form

I(u,7)=Pu)e ™ @

where k, the diffusion exponent, is a positive constant
and P(u) is a positive function of the cosine u of the
angle with the direction of increasing optical depth 7.
The same solution with the signs of k and u inverted
also exists. For some phase functions other solutions
with larger k-values exist, in which, however, the
corresponding P(u) is partly negative. All of this is
well-known theory (e.g. Van de Hulst, 1970). The k is
an eigenvalue and P(u) the corresponding eigenfunc-
tion of an integral equation. In the method of singular
eigenfunctions, or Case method, all solutions must
be found and used (e.g. Case and Zweifel, 1967, Kuscer
and McCormick, 1974). In the present context only
the least-damped one, defined above, is important.
The first similarity relation expresses the requirement
that the exponential loss factor through the entire
atmosphere should be the same:

b'K =bk. )

It has significance only for finite layers and may be
used to find the new thickness b’, once the problem of
finding ¢’ and ¢’ is settled. In order to solve that
problem we shall use three integrals over P(u):

1/2 i Pw)du=1 normalization integral , (6)
-1

12 | P)udu= Ly, (7)
-1
L 1—a)(1—

= D =“diffusion coefficient” .

These equations are exact and follow by elementary
means from the integral equation defining k and P (u).
Compare also Pomraning (1969).

The naming of the quantities thus defined requires
some comment. The diffusion coefficient is a classical
concept. It is the exact ratio between the “K-integral”
and the “average intensity” in an unbounded medium.
Its values for isotropic scattering have already been
tabulated by Case et al. (1953). It is 1/3 for a=1
and the systematic use of this value leads to the
Eddington approximation.

When the similarity problem for non-conservative
atmospheres was first posed (Van de Hulst and
Grossman, 1968) it seemed obvious to define the new
albedo a’ by requiring that

y=y (briefly: y is invariant). ©)
For that reason the name similarity parameter was

used for y. Invariant y means that the form of the
diffusion pattern P(u) remains roughly the same. But
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other choices can serve the same purpose. The next
simply choice would be to require that

L = 1-ag is invariant . . (10)
y k

There is no obvious reason why one choice should be
better than the other. Both are inconvenient in that
they require the tabulation of the transcendental
function k(a,g) before the numerical value of a' (for
given a, g, and g’ =0) can be determined. This problem
bothered us for some time and numerical tests generally
gave the impression that the two choices tended to
give deviations in opposite directions so that a still
better choice might be somewhere between.

A somewhat logical way out was found by considering
the series expansions in terms of k, which are rapidly
convergent whenever a is close to 1, ie., for nearly
conservative media. The known expansion of a (Van
de Hulst, 1968) yields the leading terms:

_k Do t D 1-g
T 3(1-9) T 37 y kO

The next terms, in each case, are of the order of k2
times the leading terms. Using these expansions, we may
now rewrite the choices made above in such a form
that the quantities kept invariant have the same

leading term, i.e. coincide in the limit a—1. This
leads to:

first choice  (9):keep y]/3 = %mvariant ,

(1)
(12)

y

second choice (10) : keep y/D]/é = u_—k——

ag))/3

invariant .

These expressions immediately suggest a third, inter-
mediate choice, namely the geometric average of these
quantities:

. . y (1—a) . .
third choice : keep —— = =5 invariant.
PVD V (1—ag) o
13

This third choice has several attractive properties. It
is intermediate and likely to be at least as good as
the two others. Also, it can be used without first
calculating a table of k(a,g). Therefore, we propose
that s may now be called the similarity parameter.
The supreme test must however be made by means of
numerical comparisons and we shall presently do so
with the spherical albedo.

The practical determination of ' and b’ (with adopted
g'=0) from a given set a, b, g, now proceeds as
follows.

First find a’ from the invariance of s, i.e.,

1—
1—ad= , ad= g (14)

then find k(a,g) and k'(a’,0) exactly, and finally find
b’ from Eq. (5).
Optionally, the middle step may be replaced by the
approximation

k(a,9)={3(1—a)(1 —ag)}'”* (15)

which is obtained from Eq. (8) by using for D the
approximate value 1/3, which is strictly valid for
a—1. This approximation makes the invariant quan-
tities in (11), (12) and (13) coincident. It further makes
bk=b(1 —ag) s]@ so that Eq. (5) is reduced to

b(1 —ag)
In the limit a— 1 we simply have a’=1 and
b(1—g)

This quantity has also been called the “effective optical
thickness”.

is invariant . (16)

is invariant . 17

3. A Universal Formula for the Spherical Albedo
of a Homogeneous Semi-infinite Atmosphere

Values of A* as well as many other quantities, accurate
to 5 decimals, are available from a book in preparation
(Van de Hulst, 1975) for the set of Henyey-Greenstein
phase functions with a=0.99, 0.95, 0.9, 0.8, 0.6, 0.4,
02 and g=0, 4, {, 1, 3, £ These computations were
performed by Dr. K. Grossman. A 4-decimal table
for g =0, isotropic scattering, has been published by
Chamberlain and Smith (1970). Incidental values are
available for other phase functions and other values
of a. This gives sufficient material for a rather thorough
test.

Figure 1a shows the straight plot of A* against
|/ (1 — a). The variation with g is seen to be enormous.
Figure 1b shows the same values plotted against the
similarity parameter s defined by Eq. (13). The differ-
ences from one smooth curve are so small that on the
scale of the graph they are invisible. If anything better
than a 1% error would satisfy us, we might stop right
here. However, we were curious to know the size of the
actual deviations. This necessitated an interpolation
formula, which was found as follows. First, there
must be a factor 1 —s to make sure that 4* vanishes
at a=0, s=1. Secondly, the expansion of A* (Van de
Hulst, 1968; there A* is called URU) in powers of k
for an arbitrary phase function may be transcribed
into an expansion in s of the form

A*=1"—4/)/3)s+4q's> + ---
=1-23095+28425*+ ---.

The coefficient of s is completely independent of the
phase function and the coefficient of s? very nearly so.
For the reduced extrapolation length ¢'=gq(1 —g)
stays well within the interval 0.71 ...0.72 for a wide
variety of phase functions (Van de Hulst, 1971). In

(18)
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'r=\/(1-a)

Fig. 1. (a) The spherical albedo 4* of a semi-infinite cloud layer as a
function of the single scattering albedo a follows a different curve
for each value of the asymmetry factor g of the single scattering
pattern. (b) These curves can be made virtually to coincide by

choosing s as the abscissa. (c) The remaining differences stay within
+0.002

Eq. (18) we have used the 4’ for isotropic scattering.
By postulating an equation of the form (1 + ¢;s) (1 —s)/
(1 4+c,s) we can now find the values of ¢; and ¢, to
match the two coefficients in Eq. (18). We rounded off
and finally adopted

(1—0.1395) (1 —s)
1+1.17s

A* =z z(s), with z(s)= (19)

The numerical calculation of z(s) gave in Fig. 1b
a curve, which is again indistinguishible from the points.
However, the differences 4 =A* —z(s) can now be
computed to 5 decimal places and are plotted in Fig. 1c
on a scale 100 times enlarged with respect to 1b. The
maximum error is seen to be 0.002. For g =0.875 the
number of available points is too small to draw a

precise curve. Small computing errors are not ex-
cluded.

1

[ g=0
A¥ ® g=050
+ g=0875

05— —]

— 0.0020
0

We examined also the alternative of plotting A*
against u=[(1 — a)/(1 — g)]? instead of s. The expansion
in terms of powers of u, analogous to Eq. (18), has the
same coefficients as (18) in the terms proportional
to u and u? (Sobolev, 1969, 1974) but the coefficient
of u? (Yanovitsky, 1972) is different from that of s* in
(18). The plots against u (not reproduced) do not
coincide very well. For instance, A* near u =0.5 ranges
from about 0.30 (g=0) to 0.34 (g =0.875), nor do the
curves reach a common end point at a=0.

Table 1 provides some further comparisons. Wang
(1972) derived a formula of A* for which he claimed
an accuracy better than one per cent over the entire
range. Table 1, with more accurate “exact” values than
those of Sobolev quoted by Wang, shows that this
claim is correct but that the simpler function z(s)
comes much closer; it rarely needs corrections exceeding
0.001.

Table 1. Comparison with exact values. 4 = correction to be added to approximate formula to obtain exact value

Phase function g a A* exact z(s) 1054 Wang Eq.(14) 10°4
Isotropic 0 975 .69500 15811 .69485 + 15 692 + 300
Isotropic 9 47802 31623 47716 + 86 472 + 602
Isotropic 5 14652 70711 .14453 +199 139 +752
Isotropic A 02170 94868 02111 + 59 .020 +170
Rayleigh phase 0 975 .69 15811 .69485 OK

function 95 .60 .22361 .59626 OK

Henyey-Greenst. 1/3 9 40897 37796 40865 + 32

linearly anisotropic 1/3 9 40834 37796 40865 - 31 399 +934
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The same table shows two entries for the Rayleigh-
phase function with the “exact” values in 2 decimals
taken from Table 25 of Harris (1961). The agreement is
again perfect but the accuracy is not high enough to
say anything more about 4. In principle, it is possible
to make a better comparison, because the reflection
function for non-conservative scattering with an ar-
bitrary linear combination of the Legendre functions
or orders 0, 1 and 2 has been derived by Horak and
Chandrasekhar (1961). We have integrated this ex-
pression according to Egs. (2) and (3) and find
rw=1-@+qu)HW, (20)
A¥*=1-2pa, —2qua,. (21)
The righthand members are in Horak’s and Chandra-
sekhar’s notation. Unfortunately, no numerical com-
putations for the non-conservative case seem to have
been published.

The reflection against a semi-infinite atmosphere with
non-conservative Rayleigh scattering, including po-
larization, has been solved completely with extensive
and precise tables (Abhyankar and Fymat, 1970,
1971). But the integrations necessary to find the
spherical albedo A* have not been performed.

An accurate comparison for g=1/3, also shown in
Table 1, gives the expected result. The exact values
for the two phase functions cited give corrections
A4 of opposite sign but both only a fraction of one
per cent. The value for the Henyey-Greenstein function
is again based on computations by K. Grossman.
The value for linearly anisotropic scattering was
newly computed on the basis of familiar formulae
(Chandrasekhar, 1950), using again Eq. (21), now
with g=0.

In the limit near a=0, s=1, single scattering forms
the dominant term, resulting in the following linear
approximations

z(s)=0.3968 (1 — ),
a=2(1—g)"'(1—s)
H.G. phase functions

g =0 (isotropic): A¥*=0.2046 a=0.4092(1 —s),
A=+.0124(1—5),

1—s=4(1—g)a,

g=% A*=0.1486 a=0.3963 (1 —5s),
A=—.0005(1—s5),

g=3% A*=0.0963 a=0.3852(1—5s),
=—.0116(1 —s),

g=3 A*=0.04695 a=0.3756 (1 —s),
A=—.0212(1—5),

9=% A*=0.02320a=03712(1 — ),

A=—0256(1—s).

These tangents have been drawn in Fig. 1c.
A practical situation, in which Eq. (19) may be used
in the reverse sense, is posed by the planet Venus.

Here A* is measured, an estimate of g is known from
other considerations, and the value of a is sought.
Hansen and Hovenier (1974) solve this problem by
getting from A* first the value of &' correct for
isotropic scattering and then a=1-(1-da)(1—g),
which is an approximation to Eq. (14) valid if a is
close enough to 1. The biggest deviation could be
expected in the ultraviolet, where ' starting from
A*=0.55, g=0.761, Hansen and Hovenier adopt
a=0.98427, whereas Eq. (19) gives a=0.98329. This
differences does not affect their conclusions.

4. The Plane Albedo

Naturally, the question arises whether a universal
formula such as Eq. (19) for A*, can also be derived
for the plane albedo r(u). Such a formula, if it exists,
should have the form of a function of u and s.
Replacement of s by some other combination of a
and g would make it impossible to find upon integration
over u the proper form for A*. We therefore compared
in Table 2, example A4, the precise r(u) values for
two combinations of a and g that happen to have
precisely the same value s=(8/17)%. The spherical
albedo, which is nearly 16 per cent, shows the same
good match which we have already noted. The plane
albedo does not match very well, which is not a great
surprise since this example is very far from the
conservative case. It is quite clear, for instance, that
the plane albedo for grazing incidence, r(0), depends
chiefly on a and only weakly on g.

The only remedy is to add another independent
variable, ie., to find a convenient approximation
formula of the form r(y, s, a) or r(y,s,g). This should
be a relatively easy task, for it means no reduction
of the number of variables from the original function
so that, in fact, the similarity concept is dropped
altogether. Closer similarity is found if we come
closer to the conservative case, as shown by the example
B of Table 2. This example is well enough in the
nearly-conservative domain to approximate Eq. (14)
by the rule that (1 —a)/(1 —g) should be the same.

Table 2. Two examples by which the similarity for the plane
albedo r(u) may be tested

Example A Example B

a=06 a=09 a=0.96 a=0.99

g=0.25 g=0.875 g=0 g=0.75

s =0.6860 s =0.6860 s =0.2000 s =0.1970
u=0 .3593 .6255 .8000 8624
0.1 2932 4269 7598 .8033
0.3 2229 2658 7043 .7285
0.5 1781 .1836 6593 6710
0.7 1462 1331 .6207 6222
09 1223 .0993 .5868 5791
1 1125 0865 5713 .5592
A* .1580 1568 6306 .6348
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This makes a difference of only 11% in s. The
differences between the corresponding r(u) values
found in this example are 5% at most.

Altogether, we feel that an approximation formula
with s as one of the independent variables should have
a practical advantage. How to find such a formula is
a matter of taste and may depend on the problem at
hand. Starting by an approximation concept in solving
the equation of transfer, as Wang has done, is certainly
possible. Getting first the precise numerical result
and fitting an expression by making incidental use of
known limiting cases [the method followed above to
find Eq. (19)] is also attractive and gives a better
guarantee of a close match.

References

Abhyankar,K.D., Fymat,A.L. 1970, Astron. & Astrophys. 4, 101

Abhyankar,K.D., Fymat,A.L. 1971, Astrophys. J. Suppl. 23, 35

Ambartsumyan,V.A. 1958, “Theoretical Astrophysics”, London,
Pergamon

Case,K.M., De Hofman,F., Placzek,G. 1953, Introduction to the
theory of neutron diffusion I, Los Alamos Sci. Lab.

Case,K.M., Zweife,P.F. 1967, Linear transport theory, Addison-
Wesley, Reading

Chamberlain,J. W., Smith,G.R.

Chandrasekhar,S.
Press

1970, Astrophys. J. 160, 755
1950, Radiative transfer, Oxford, Clarendon

Hansen,J.E., Hovenier,J.W. 1974, J. Atmosph. Sci. 31, 1137

Harris,D.L. 1961, in The solar system, Vol. III, Planets and
satellites, G. P. Kuiper and B. M. Middlehurst, Ed., Univ. of
Chicago, p. 272

Horak,H.G. 1950, Astrophys. J. 112, 445

Horak,H.G., Chandrasekhar,S. 1961, Astrophys. J. 134, 45

Kuscer,1., McCormick,N.J. 1974 in The UCLA international con-
ference on radiation and remote probing of the atmosphere,
J. G. Kuriyan, Ed.,, Dept. of Meteorology Univ. California, Los
Angeles, p. 196

Pomraning, G.C.

Russell, H.N.

1969, Astron. & Astrophys. 2, 419

1916, Astrophys. J. 43,173

Sobolev,V.V. 1969, Doklady A.N. 184, 318, Sov. Phys. Dok. 14, 1

Sobolev,V.V. 1974, Light scattering in planetary atmospheres,
W. M. Irvine, translator.

Van de Hulst, H.C. 1968, Bull. Astron. Inst. Neth. 2, 419

Van de Hulst, H.C. 1970, Astron. & Astrophys. 9, 366

Van de Hulst,H.C. 1971, in Planetary Atmospheres, I.A.U. Symp.
No. 40, Ed., Sagan, Owen and Smith, Dordrecht, Reidel

Van de Hulst,H.C. 1975, Multiple light scattering in plane at-
mospheres

Van de Hulst,H.C.,, Grossman,K. 1968, p. 35 in The atmospheres
of Venus and Mars, Ed.,, J. C. Brandt and M. B. McElroy,
New York, Gordon and Breach

Wang,L. 1972, Astrophys. J. 174, 671

Yanovitsky,G. 1972, Astron. Zh. 49, 844, Sov. Astron. A. J. 16,
687 (1973)

H. C. van de Hulst
Sterrewacht
Leiden-2401

The Netherlands

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1974A%26A....35..209V

